Aus RN-Wissen.de
Wechseln zu: Navigation, Suche
Rasenmaehroboter Test

(Wärme-Ersatzschaltbilder)
(Wärme-Ersatzschaltbilder)
Zeile 105: Zeile 105:
  
 
=Wärme-Ersatzschaltbilder=
 
=Wärme-Ersatzschaltbilder=
[[Bild:kühlkörper-schichten.png|250px|left]]
+
[[Bild:kühlkörper-schichten.png|250px]]
 +
 
 
TIM: Thermisches Interface-Material
 
TIM: Thermisches Interface-Material
  

Version vom 19. April 2015, 09:39 Uhr

Baustelle.gif An diesem Artikel arbeitet gerade Mitglied BMS.

Am besten momentan noch keine gravierenden Ergänzungen / Änderungen vornehmen.

Dieser Hinweis verschwindet wenn der Autor soweit ist. Sollte dieser Hinweis länger als drei Tage auf einer Seite sein, bitte beim Autor BMS per PM / Mail oder Forum nachfragen ob er vergessen wurde.

Dieser Artikel behandelt die Grundlagen zu Kühlkörpern.

Verschiedene Kühlkörper, links ein TO220-Gehäuse zum Größenvergleich

Einleitung

Wieso sind überhaupt Kühlkörper in technischen Geräten erforderlich?

Kein Gerät kann einen 100-prozentigen Wirkungsgrad erzielen und somit tritt Verlustleistung auf. Diese Verlustleistung führt zur Erwärmung der Bauteile. Kühlkörper sollen die Entwärmung verbessern, indem die entstehende Wärme auf eine große Fläche verteilt wird und durch Konvektion an der Luft auskühlen kann. Die Temperatur an den heißen Bauteilen ist mit Kühlkörper geringer als ohne Kühlkörper.

Wieso sind hohe Bauteiltemperaturen ungünstig?

Die Lebensdauer aller elektronischen Bauteile ist stark von der Temperatur abhängig. Als Faustregel gilt: Eine Temperaturerhöhung um 10 Grad führt zur Halbierung der Lebensdauer. Außerdem gibt es Grenztemperaturen, die nicht überschritten werden dürfen. Beispielsweise dürfen Halbleiter keine Temperatur über 150°C erreichen. Extrembeispiele sind die Schmelztemperatur von Isolierungen, Lötzinn etc... sowie Brandgefahr durch hohe Temperaturen. Viele Bauteile können ohne vernünftige Kühlung nicht ihren vollen Funktionsumfang erreichen, liefern dann z.B. geringere Maximalströme oder es greift die Temperaturabschaltung. Anders formuliert: Die maximale Leistung eines Bauteils oder Geräts wird durch seine Entwärmung bestimmt! Zur eigenen Sicherheit bietet es sich zudem an, die Temperaturen niedrig zu halten, sodass man sich am Gerät nicht die Finger verbrennen kann ;)

Wärmeübertragung

Prinzipiell kann Wärmeübertragung über Wärmeleitung, Konvektion und Wärmestrahlung geschehen. In vielen Anwendungen treten mehrere Mechanismen gleichzeitig auf. Welcher Mechanismus hauptsächlich auftritt, ist von der mechanischen Anordnung, den Materialien und der Temperatur abhängig. Wärmeleitung und Konvektion sind die wichtigsten Arten der Wärmeübertragung, die in der Praxis auftreten.

Bei der Wärmeleitung wird die Wärme über einen direkten mechanischen Kontakt (Bsp. IC [math]\rightarrow[/math]Kühlkörper) übertragen. Den beteiligten Materialien wird jeweils eine spezifische Wärmeleitfähigkeit [math]\lambda[/math] zugeordnet, dazu später mehr.

Mit Konvektion wird die Strömungsbewegung in Flüssigkeiten und Gasen bezeichnet. Praxisbeispiele sind die Wärmeabgabe eines Kühlkörpers an die Umgebungsluft oder auch eine Wasserkühlung. Von erzwungener Konvektion spricht man, wenn die Strömung durch z.B. einen Ventilator/Lüfter oder eine Wasserpumpe hervorgerufen wird. Im Vakuum kann keine Konvektion auftreten.

Wärmestrahlung ist elektromagnetische Strahlung (hauptsächlich Infrarot und sichtbares Licht), die vom heißen Festkörper abgestrahlt wird. Sie wird erst bei höheren Temperaturen relevant und ist bei den üblichen Kühlkörpertemperaturen meist zu vernachlässigen. Erwähnt werden soll zudem, dass Wärmestrahlung der einzige Mechanismus der Wärmeleitung ist, welcher im Vakuum auftreten kann. (Für Details zu Wärmestrahlung siehe auch: Plancksches Strahlungsgesetz und Schwarzer Strahler).

Materialien

Jedes Material besitzt eine spezifische Wärmeleitfähigkeit, welche angibt, wie gut dieses Material Wärme weiter transportieren kann. Die spezifische Wärmeleitfähigkeit ist unabhängig von der Geometrie des Materials, wird mit der Größe [math]\lambda[/math] (Lambda) ausgedrückt und erhält die Einheit [math]\frac{W}{m \cdot K}[/math].

Material [math]\lambda[/math] in [math]\left[ \frac{W}{m \cdot K} \right][/math]
Silber 430
Kupfer 400
Aluminium 230
Silizium 140
Wärmeleitpaste 5 ... 10
Glas 0,7
Wasser 0,5
Platinenmaterial FR4 0,2 ... 0,5
Luft 0,02

Die meisten Kühlkörper werden aus Aluminiumlegierungen hergestellt. Für Aluminium spricht seine relativ hohe Wärmeleitfähigkeit, die hohe Verfügbarkeit und geringe Dichte. Im Vergleich zu Kupfer und Silber ist Aluminium deutlich kostengünstiger. Darüber hinaus lässt sich Aluminium mechanisch gut verarbeiten. Kupfer wird mit seiner höheren Wärmeleitfähigkeit z.B. bei Heatpipes eingesetzt.

todo

Wärmewiderstand [math]R_{th}=\frac{d}{\lambda \cdot A}[/math]

d: Materialdicke, welche für die Wärmeleitung relevant ist

[math]\lambda[/math]spezifische Wärmeleitfähigkeit des Materials

A: Querschnitts-/Kontaktfläche

Definitionen

Um vorauszusagen, wie sich die Temperaturen in einer Schaltung verhalten, bedient sich der Ingenieur - wie auch bei vielen anderen Anwendungen - eines Ersatzschaltbildes (ESB). Zur Erstellung eines thermischen Ersatzschaltbildes muss man sich aber zunächst mit den thermischen Größen vertraut machen.

Die Temperaturen werden mit dem griechischen Buchstaben Theta [math]\theta[/math] gekennzeichnet. Temperaturen werden in Grad Celsius (°C), Temperaturdifferenzen in Kelvin (K) angegeben. (Am Rande: Es existiert auch eine Kelvinskala mit dem absoluten Nullpunkt 0 K=-273,15°C). Die Temperaturen werden außerdem noch mit einem Index gekennzeichnet, abhängig von der mechanischen Stelle, an der sie auftreten:

Symbol Index Bedeutung
[math]\vartheta_{J}[/math] J=Junction Sperrschichttemperatur des Halbleiters
[math]\vartheta_{C}[/math] C=Case Gehäusetemperatur des Bauteils
[math]\vartheta_{H}[/math] H=Heat Sink Temperatur des Kühlkörpers
[math]\vartheta_{A}[/math] A=Ambient Umgebungstemperatur

Die Verlustleistung eines Bauteils beschreibt die Größe [math]P_{V}[/math] und wird, wie allgemein bekannt, in Watt angegeben.

Als neue Größe wird nun der thermische Widerstand eingeführt, dieser wird mit [math]R_{th}[/math] beschrieben und bekommt die Einheit [math]\frac{K}{W}[/math].

Für die thermischen Größen gibt es, ähnlich dem Ohmschen Gesetz, einen linearen Zusammenhang. Dieser lautet

[math]R_{th}=\frac{\vartheta_{ü}}{P_{V}}[/math]

todo

Vergleich elektrischer und thermischer Größen

Insgesamt können wir nun eine Analogie zwischen bekannten elektrischen Größen und den thermischen Größen angeben. Die schon gelernten Prinzipien zur Lösung linearer Netzwerke lässt sich auch bei den thermischen Ersatzschaltbildern anwenden.

elektrisch thermisch
Spannung U Temperatur [math]\vartheta[/math]
Strom I Verlustleistung [math]P_{V}[/math]
Widerstand R thermischer Widerstand [math]R_{th}[/math]

Wärme-Ersatzschaltbilder

Kühlkörper-schichten.png

TIM: Thermisches Interface-Material

Kühlkörperbauformen

  • Board-Level-Kühlkörper (aufsteckbare/aufklebbare Kühlkörper, auch für SMD, meist 1 Kühlkörper pro IC)
  • Strang-/Profilkühlkörper (meist für hohe Leistungen)
  • Kühlaggregate (Kanal + Lüfter)

Wozu eloxierte Oberflächen?

  • geringfügig höhere Wärmestrahlung (bei den niedrigen Temperaturen kaum ein Beitrag)
  • elektrische Isolation
  • Oberflächenschutz

Nachteile:

  • erhöhte Wärmeaufnahme aus der unmittelbaren Umgebung!

Stiftkühlkörper

  • hohe Oberfläche
  • bei dickem "Rücken"/"Boden" des Kühlkörpers gute Wärmespreizung
  • mit erzwungener Konvektion hohe Wärmeübertragung (quer zu den Stiften effektiver als in Stiftrichtung)
  • leichter und kompakter als Strangkühlkörper

todo

Lüfter

Lüfter werden vor allem dann eingesetzt, wenn der Kühlkörper bei rein passiver Kühlung zur groß, zu schwer oder zu teuer wird. Beim Einsatz des Lüfters führt die erzwungene Luftströmung zur besseren Wärmeabgabe an die Luft. Bei gleicher Temperatur kann der Kühlkörper dann kleiner gewählt werden. Bei hohen Leistungen sind der kleinere Kühlkörper mit Lüfter preisgünstiger und kompakter als ein großer, rein passiver Kühlkörper. Um welchen Faktor die Wärmeableitung mit Lüfter verbessert wird, hängt von vielen Parametern ab und kann nicht pauschal angegeben werden.

Vorteile

  • bessere Wärmeabgabe
  • Kühlkörper kann bei gleicher Temperatur kleiner, leichter und kostengünstiger werden
  • In kleinem Maßstab günstiger als Wasserkühlung o.ä.

Nachteile

  • zusätzlicher Stromverbrauch
  • Geräuschentwicklung und Vibrationen
  • zusätzliche Kosten für Lüfter und dessen Montage
  • Im Falle eines unbemerkten Ausfalls kann die Schaltung überhitzen (Abhilfe: Thermostat, Temperaturfühler oder Tachosignal auswerten)

Anordnungen:

  • Push-Prinzip: Der Lüfter bläst die Luft in den Kühlkörper/-kanal
  • Pull-Prinzip: Der Lüfter saugt die Luft aus dem Kühlkörper/-kanal heraus

Kenngrößen:

  • Luftdurchsatz in [math]\frac{m^{3}}{h}[/math]
  • Nennspannung, Nennstrom, Nennleistung
  • Typ Axial/Radial
  • Größe
  • Geräuschpegel
  • Art der Lagerung (Kugellager, Sinterbronze-Lager etc.)
  • Temperaturbereich
  • Lebensdauer, MTBF

Kühlung auf einer Platine

Beim Leiterplattenentwurf muss bereits in der Designphase abgeschätzt werden, welche Verlustleistungen auftreten und wie die entstehende Wärme abgeführt werden kann. Die Größe, Bauform und Befestigung des Kühlkörpers muss ebenfalls berücksichtigt werden. Für Printmontage sind Kühlkörper verfügbar, welche mit lötbaren Stiften in die Platine gesteckt und verlötet werden. Alternativ sind Schraubverbindungen möglich.

SMD-Bauteile können meist über die Platine gut entwärmt werden. Dies ist normalerweise nur bei geringen Verlustleistungen möglich. Die Abwärme der Bauteile muss auf eine möglichst große Fläche verteilt werden, durch große Kupferflächen auf der Platine kann dies erreicht werden. Da die Wärmeleitfähigkeit der Kupferauflage deutlich höher ist als die Wärmeleitfähigkeit des Platinenmaterials FR4, wird sich die Wärme hauptsächlich in der Fläche verteilen, jedoch weniger durch die Platine hindurch. Um die Wärmeleitung durch die Platine (z.B. von Ober- zu Unterseite) zu erhöhen, müssen Durchkontaktierungen gesetzt werden. Sogenannte "Thermal Vias" werden in einer großen Anzahl an das zu entwärmende Bauteil gesetzt und können damit die Wärme zu anderen Kupferlagen der Platine weiterleiten. Die Wärmeleitung durch die Platine hindurch wird verbessert, liegt aber dennoch deutlich unter der Wärmeleitfähigkeit von reinem Kupfer. Thermische Vias können aufgrund ihrer kleinen Masse kaum einen Beitrag zur gesamten "Kühlmasse" beitragen. Ob schließlich eine Entwärmung durch die Platine ausreicht, muss durch Simulation oder Messung gezeigt werden.

Die Einbaulage der Platine kann die Entwärmung zudem beeinflussen. Erwärmte Umgebungsluft steigt nach oben und kann andere Komponenten oder Platinen aufheizen.

Maßnahmen für bessere Entwärmung:

  • Durchkontaktierungen zur Wärmeleitung zwischen mehreren Kupferlagen, da der Platinenkern (bei FR4: glasfaserverstärktes Epoxidharz) idR. eine sehr schlechte Wärmeleitfähigkeit hat
  • Breite Leiterbahnen, welche Wärme abführen und auf eine große Fläche verteilen
  • Für große bedrahtete ICs (TO220, Multiwatt...) eignen sich Board-Level-Kühlkörper
  • Für kleinere ICs mit Wärmeentwicklung eignen sich aufklebbare Kühlkörper
  • Für SMD-Bauteile exisitieren auch Kühlkörper, die sich direkt auf die Platine löten lassen, diese sind auch maschinenbestückbar
  • Einsatz spezieller Platinenmaterialien (Alukern, Kupfer-Inlay)...
  • je nach Schaltung: dickere Kupferkaschierung für bessere Wärmeausbreitung in der Fläche (Standard sind 35µm, erhältlich sind auch 70µm und mehr)

todo

Spezielle Kühlkörper

todo


LiFePO4 Speicher Test