Aus RN-Wissen.de
Wechseln zu: Navigation, Suche
Laderegler Test Tueftler Seite

K (Links)
Zeile 92: Zeile 92:
  
 
== Links ==
 
== Links ==
[http://www.onsemi.com/pub_link/Collateral/AND8203-D.PDF Schutz mit MOSFETS (englisch)] ... Entweder funtioniert der Link nicht oder ist extrem langsam (williwilli - 21.10.2009)
+
[http://www.onsemi.com/pub_link/Collateral/AND8203-D.PDF Verpolungsschutz mit MOSFETS (englisch)] ... Entweder funtioniert der Link nicht oder ist extrem langsam (williwilli - 21.10.2009)
 
+
  
 
== Autor ==
 
== Autor ==

Version vom 19. November 2009, 23:25 Uhr

Dieser Artikel ist noch lange nicht vollständig. Der Auto/Initiator hofft das sich weitere User am Ausbau des Artikels beteiligen.

Das Ergänzen ist also ausdrücklich gewünscht! Besonders folgende Dinge würden noch fehlen:

Ich kann wegen Urlaub erst ab 01.12. an diesem Artikel weiterarbeiten. Wer will, kann gerne die Kapitel ausbauen sowie Bilder und/oder Schaltungsbeispiele einfügen!


Baustelle.gif An diesem Artikel arbeitet gerade Mitglied Williwilli.

Am besten momentan noch keine gravierenden Ergänzungen / Änderungen vornehmen.

Dieser Hinweis verschwindet wenn der Autor soweit ist. Sollte dieser Hinweis länger als drei Tage auf einer Seite sein, bitte beim Autor Williwilli per PM / Mail oder Forum nachfragen ob er vergessen wurde.

Schutzschaltungen werden eingesetzt, um existierende Schaltungen vor schädlichen äußeren Einflüssen oder vor Bedienungsfehlern im Umgand mit ihnen zu bewahren:

  • Ein Verpolungsschutz wird in der Spannungsversorgung eines Verbrauchers (Gerätes) eingesetzt. Die Schutzschaltung verhindert entweder die falsche Polarität oder begrenzt den durch diese Verpolung entstehenden Schaden.
  • Ein Kurzschlußschutz wird üblicherweise am Ausgang von Spannungsquellen verwendet. Diese Schutzschaltung soll eine Schädigung der Regelungselektronik durch einen anliegenden äußeren Kurzschluß verhindern.
  • Überspannungsschutzschaltungen sind meist an Eingängen von Schaltungen zu finden, die nicht der Spannungsversorgung dienen; aber auch in Netzteilen für unterschiedliche Spannungen sind sie gelegentlich zu finden. Die bekannteste Überspannungsschutzschaltung ist der Blitzschutz in Antennenzuleitungen.

Eine vorhandene Schutzschaltung soll entweder eine Schädigung vollständig verhindern oder, wenn dies nicht möglich ist, den entstehenden Schaden begrenzen.


Verpolungsschutz

Verpolungsschutz mit Dioden

Einfacher Verpolungsschutz mit Diode
  • Variante 1: Eine Diode wird in Reihe mit der Versorgungsspannung geschaltet.
    • Funktion: Bei Verpolung sperrt die Diode, der Verbraucher erhält keinen Strom.
    • Vorteil: Nur eine Diode.
    • Nachteil: Für die Diode müssen Verlustleistung, Spannungsabfall sowie Durchlaßstrom beachtet werden.
Verpolungsschutz mit Diode und Sicherung
  • Variante 2: Eine Diode wird antiparallel zur Versorgungsspannung geschaltet, zusätzlich wird eine Sicherung in die Zuleitung eingefügt.
    • Funktion: Bei Verpolung schließt die Diode die Versorgungsspannung kurz. Die Sicherung spricht an und verhindert den echten Kurzschluss sowie das Durchbrennen der Diode.
    • Vorteil: Bei korrekter Polung hat die Schutzschaltung keinen Einfluß auf den Rest der Schaltung.
    • Nachteil: Bei Verwendung von normalen Sicherungen ist nach einer Verpolung ein Wechsel notwendig.
Verpolungsschutz mit TVS und Sicherung
  • Varinate 2b: wie Variante 2, nur statt einer normalen Diode wird ein unipolarer Überspannungsschutz (engl.: transient voltage suppressor TVS; z.B. 1.5KE12A) benutzt.
    • Vorteil: bietet zusätzlichen Schutz vor zu hoher Spannung.
    • Nachteil: teurer als normale Diode




Verpolungsschutz mit MOSFETs

Für den Verpolungsschutz mit einem MOSFET wird der FET in der Schaltung anders als sonst üblich benutzt, also beim n-Kanal-FET mit Drain zur negativen Seite der Spannungsquelle. Anfangs fließt der Strom über die interne Diode im MOSFET. Wenn etwa 2..4 V erreicht sind, leitet dann zusätzlich der eigentliche MOSFET.

Verpolungsschutz mit p-MOSFET
  • Variante 1: p-Kanal-MOSFET in Reihe mit der positiven Spannungsversorgung
    • Vorteil: sehr geringer Spannungsabfall, Überspannung kann zur Quelle abgleitet werden
    • Nachteil: Mindestspannung ca. 4 V, mit Logic-Level-FETs ca. 2 V.
    • Nachteil: Ein Elko in der Schaltung bietet keinen Schutz vor Spannungseinbrüchen auf der Versorgungsseite.
    • Nachteil: Etwas Stromverbrauch (z.B. 0,1 mA) bei Spannungen über etwa 20 V.
    • Nachteil: Oft teurer als Diodenlösung.
    • Nachteil: Logic-Level-FETs selten, oft teurer als n-MOSFET


Verpolungsschutz mit n-MOSFET
  • Variante 2: n-Kanal-MOSFET in Reihe mit der negativen Spannungsversorgung (GND)
    • Vorteil: wie Variante 1
    • Nachteile: wie Variante 1


Verpolungsschutz mit n-MOSFET
Reale Schaltung für einen Verpolungsschutz mit einem n-MOSFET. Für Spannungen, die sicher unter etwa 20 V liegen (maximale Gate-Source-Spannung), kann man auf die Diode, Zenerdiode und den Widerstand verzichten.


Verpolungsschutz mit anderen Bauteilen

  • Variante 1: Vorgeschalteter Brückengleichrichter.
    • Funktion: siehe Gleichrichter
    • Vorteil: Es liegt immer die richtige Polarität am Verbraucher an, auch wenn beim Anschluss die Leitungen vertauscht werden.
    • Vorteil: Verträgt auch Wechselspannung.
    • Nachteil: Spannungsabfall (ca. 1.4 V) und Verlustleistung am Brückengleichrichter
    • Nachteil: Schaltungsmasse (GND) ist um 0,7V potentialverschoben zu der Versorgungsspannung.


Verpolungsschutz mit Relais
  • Variante 2: Relais schaltet mit Hilfe einer Diode die Versorgungsspannung zum Verbraucher.
    • Vorteil: Kaum Spannungsabfall an den Schaltkontakten.
    • Nachteile: Zusätzliche Verlustleistung in der Relaisspule. Durch Trägheit des Relais kein Schutz vor Pulsen mit falscher Polung.


  • Variante 3: Ähnlich wie mit MOSFET, aber mit normalem Transistor
    • Vorteile: für Spannungen ab ca. 1 V möglich, kleiner Spannungsabfall (<100mV), ggf. auch als Strombegrenzung
    • Nachteile: Stromverbrauch (Basistrom), Schutz nur bis etwa 5V, ggf. etwas Leckstrom


  • Variante 4: Spannungsregler mit integriertem Verpolungsschutz (z.B. LM2931)
    • Vorteile: keine extra Bauteile
    • Nachteile: nur wenige, eher teure Regeler bieten diese Funktion, Elko vor dem Regler ist nicht geschützt


Überspannungsschutz

für kleine Spannungsdifferenzen (z.B. 5V/12V)

für mittlere Spannungsdifferenzen (z.B. 5V/220V)

für große Spannungsdifferenzen (z.B. Blitzschutz)

Kurzschlußschutz

für kleine Leistungen (z.B. Controllerausgänge)

für mittlere Leistungen (z.B. Netzteile)

für große Leistungen (ab Netzspannung)

Anmerkungen

Der Autor möchte hier weder die an anderen Stellen zu findenden Formelsammlungen wiedergeben, noch mit diesem Artikel ein Fachbuch ersetzten. Einzig die Grundlagen, die (aus eigener Erfahrung) für einen Hobby-Bastler von Interesse sind, sollen hier dargestellt werden.


Links

Verpolungsschutz mit MOSFETS (englisch) ... Entweder funtioniert der Link nicht oder ist extrem langsam (williwilli - 21.10.2009)

Autor

--Williwilli 14:54, 11. Dez 2008 (CET)


LiFePO4 Speicher Test