Aus RN-Wissen.de
Wechseln zu: Navigation, Suche
Rasenmaehroboter fuer schwierige und grosse Gaerten im Test

K
K
Zeile 28: Zeile 28:
  
 
:* Die absoluten Positionierfehler Soll/Ist des TCP liegen unter 1/10.000 mm, meist in einer Größenordnung von 10-5 bis 10-6 mm.
 
:* Die absoluten Positionierfehler Soll/Ist des TCP liegen unter 1/10.000 mm, meist in einer Größenordnung von 10-5 bis 10-6 mm.
 +
 +
==3D-Kinematik & 2D-Perspektive==
 +
'''Foto fehlt noch'''

Version vom 3. Januar 2016, 17:36 Uhr

Irgendwie hatte sich aus Diskussionen zur Knickarm-Robotermechanik die Frage ergeben, …"und wie berechnen Sie das?" Meine Antwort war, "Mit EXCEL ® ist das recht einfach." Ganz so einfach war es dann doch nicht; entstanden ist ein Mathematischer 3D Gelenk-Baukasten. Eine kostenlose Test und Demo-Version Sie erhalten im Download.

Vorwort

Im Internet findet sich einiges zum Thema, aber wenig Zusammenhängendes im Focus Robotic. Mit einigen Links verweise ich auf diejenigen, von denen ich "Honig gesaugt" habe. Alle externen Links sind offen mit ihrer URL im Kontext des Tutorials ausgewiesen und nicht hinter einem Pseudonym versteckt. – Clicken muß man sie nur, um in die Tiefe zu gehen!

  • Hier, im Teil 2 finden Sie Praxis orientierte Problemlösungen. Besprochen werden ein 3D Bahngenerator und die aus der "Sollbahn" berechneten Winkel der Knickarme.
Hierzu sollten Sie die kostenlose Test und Demo-Version downloaden.
  • Teil 1 dieses Artikels gibt theoretischen Back-Ground. Hier finden Sie Hintergrundinformation zu Problemen der Kinematik, theoretische Lösungsansätze und die Mathematik der Winkeltransformation. Für die Nutzung des Gelenkbaukastens ist es nicht unbedingt erforderlich, dieses zu lesen – es kann aber hilfreich sein!

Mathematischer 3-D Gelenk-Baukasten

(Handbuch –Auszug)

Systemüberblick

Der Baukasten ist aus der Aufgabe entstanden, anwenderorientiert und Hardware neutral

  • Rotations- und Teleskopachsen für Knickarm-Robotersysteme beliebiger Bauart & Geometrie - ggf. auf Portal verfahrbar - mathematisch zusammenzustellen,
  • Gelenk-Winkel und XYZ-Koordinaten wahlweise direkt oder invers zu berechnen und
  • das Roboter-System im 3D-Raum zu visualisieren.
  • In Anlehnung an die 8-Achsen Bahnsteuerung RoBo-mac's berechnet der Gelenk-Baukasten 8 Achsen mit jeweils 2 Freiheitsgraden (Teleskop-Dreh-Achse). Der Algorithmus ermöglicht beliebig viele kaskadierbare Achsen und ist somit erweiterbar.
  • Das Ergebnis steht numerisch (16-stellig / Fließkomma 15 Ziffern) zur Verfügung und wird ergänzend als 3D Grafik visualisiert.

Direkte Kinematik

Die kinematischen Grenzen werden durch Parametrierung der Achs-Längen, ihrer XYZ-Grundorientierung und der max. Achs-Drehwinkel definiert. An- und Abtrieb jedes Gelenkes kann unter beliebigem Winkel im Raum stehen. Die Werte werden über Schieber verändert und Real-Time visualisiert.

Inverse Kinematik

Um trotz Überbestimmung aus theoretisch unendlich vielen Winkel-Kombinationen möglichst geeignete Vektorlagen der Roboterarme zu berechnen verfolgt RoBo-mac mehrere, frei wählbare Bewegungsstrategien. Der Algorithmus basiert auf trigonometrischen und iterativen Elementen. Er arbeitet unabhängig von der Vorwärts Kinematik und nutzt diese für die Ergebnis-Visualisierung sowie die Positionskontrolle.

  • Die absoluten Positionierfehler Soll/Ist des TCP liegen unter 1/10.000 mm, meist in einer Größenordnung von 10-5 bis 10-6 mm.

3D-Kinematik & 2D-Perspektive

Foto fehlt noch


LiFePO4 Speicher Test