Aus RN-Wissen.de

Zeile 9: | Zeile 9: | ||
<math> | <math> | ||
(f\star g)(x) = \int_{-\infty}^\infty f(y)\,g(x-y) \,dy \qquad \mathrm{Faltung\ von\ }f\mathrm{\ und\ }g | (f\star g)(x) = \int_{-\infty}^\infty f(y)\,g(x-y) \,dy \qquad \mathrm{Faltung\ von\ }f\mathrm{\ und\ }g | ||
+ | </math> | ||
+ | ---- | ||
+ | <math> | ||
+ | (f\star t)_n = \sum_{i=-K}^K t_i \cdot f_{n+i} \qquad\mathrm{mit}\qquad 1 = \sum_{i=-K}^K t_i | ||
</math> | </math> |
Version vom 24. April 2006, 17:18 Uhr
S(a,b)=n∑i=1(f(xi)−m(xi))2
∫2π/b0|a⋅sin(bx)|dx=4|a/b|
(f⋆g)(x)=∫∞−∞f(y)g(x−y)dyFaltung von f und g
(f⋆t)n=K∑i=−Kti⋅fn+imit1=K∑i=−Kti
