Dirk (Diskussion | Beiträge) K (→Anstiegszeitmessung) |
Dirk (Diskussion | Beiträge) K (→Test-Messung) |
||
(37 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 364: | Zeile 364: | ||
* Den Oszilloskop-Tastkopf an die CH1 Eingangsbuchse (8) anschließen | * Den Oszilloskop-Tastkopf an die CH1 Eingangsbuchse (8) anschließen | ||
* Die Tastkopf-Spitze an den Kalibrierausgang CAL (1) anklemmen | * Die Tastkopf-Spitze an den Kalibrierausgang CAL (1) anklemmen | ||
− | * Den | + | * Den Schalter CH1 VOLTS/DIV (7) in Stellung 50 mV bringen |
* Den Teilungsfaktor-Schiebeschalter am Oszilloskop-Tastkopf in Stellung "10" bringen | * Den Teilungsfaktor-Schiebeschalter am Oszilloskop-Tastkopf in Stellung "10" bringen | ||
* Den CH1 Eingangswahlschalter (10) in Stellung "AC" bringen | * Den CH1 Eingangswahlschalter (10) in Stellung "AC" bringen | ||
Zeile 382: | Zeile 382: | ||
'''Die CH1 & CH2 Eingangswahlschalter (10, 18) sind also sehr wichtig! In der Stellung "GND" ist das Oszilloskop gut geschützt. Man sollte den/die Eingangswahlschalter nur zum eigentlichen Messbetrieb in die Stellung "AC" oder "DC" bringen und sonst in der Grundstellung "GND" lassen.''' | '''Die CH1 & CH2 Eingangswahlschalter (10, 18) sind also sehr wichtig! In der Stellung "GND" ist das Oszilloskop gut geschützt. Man sollte den/die Eingangswahlschalter nur zum eigentlichen Messbetrieb in die Stellung "AC" oder "DC" bringen und sonst in der Grundstellung "GND" lassen.''' | ||
− | '''Aus dem selben Grund des Messgerät-Schutzes sollte der TIME/DIV Schalter (29) nie dauerhaft in | + | '''Aus dem selben Grund des Messgerät-Schutzes sollte der TIME/DIV Schalter (29) nie dauerhaft in der Stellung "X-Y" stehen.''' |
<br/><br/><br/> | <br/><br/><br/> | ||
Zeile 440: | Zeile 440: | ||
[[bild:Anstiegszeit.JPG|640px]] | [[bild:Anstiegszeit.JPG|640px]] | ||
− | Eine häufig benötigte Angabe ist, wie schnell ein Signal von 0% auf 100% seiner Maximalspannung ansteigt. Dazu ist das Oszilloskop gut geeignet,- allerdings kommt ggf. auch ein Oszilloskop an seine Grenzen, wenn sehr schnelle | + | Eine häufig benötigte Angabe ist, wie schnell ein Signal von 0% auf 100% seiner Maximalspannung ansteigt. Dazu ist das Oszilloskop gut geeignet,- allerdings kommt ggf. auch ein Oszilloskop an seine Grenzen, wenn eine sehr schnelle '''Anstiegszeit (rise time)''' gemessen werden muss. |
Die gezeigte Anstiegsflanke wurde mit der Grundstellung des Oszilloskops aufgenommen mit folgenden Änderungen: | Die gezeigte Anstiegsflanke wurde mit der Grundstellung des Oszilloskops aufgenommen mit folgenden Änderungen: | ||
− | * Die Zeitablenkung (Schalter TIME/DIV (29)) wird auf | + | * Die Zeitablenkung (Schalter TIME/DIV (29)) wird auf 10µs eingestellt |
− | * Die Amplitude des Signals wird mit dem | + | * Den Teilungsfaktor-Schiebeschalter am Oszilloskop-Tastkopf in Stellung "10" bringen |
− | * Die horizontale Lage des Signals wird mit dem Regler <> POSITION (32) so verschoben, dass der Anfangspunkt der ansteigenden Flanke (0%) auf der ersten vertikalen Rasterlinie von Links liegt. | + | * Die Amplitude des Signals wird mit dem Schalter CH1 VOLTS/DIV (7) und falls nötig zusätzlich mit der CH1 Empfindlichkeitseinstellung CH1 VARIABLE (9) so eingestellt, dass sie genau zwischen den horizontalen 0% und 100% Punkt-Linien des Rasters auf dem Bildschirm liegt |
+ | * Die horizontale Lage des Signals wird mit dem Regler <> POSITION (32) so verschoben, dass der Anfangspunkt der ansteigenden Flanke (0%) auf der ersten vertikalen Rasterlinie von Links liegt (vereinfacht die Anstiegszeitmessung). | ||
+ | |||
+ | Warum diese Einstellungen? | ||
+ | Die Einstellung der Zeitablenkung richtet sich nach der Steilheit der Flanke. Sie ist so einzustellen, dass man die Anstiegszeit zwischen 0% und 100% gut darstellen und messen kann. '''Der Teilungsfaktor des Tastkopfes wird auf "10" gestellt, da die Eigen-Anstiegszeit des Oszilloskops (mit Tastkopf) in dieser Stellung nur ein Zehntel der Stellung "1" beträgt. Damit minimiert sich der Messgeräte-Fehler.''' | ||
+ | Die Amplitudenanpassung des Signals erfolgt, weil es am einfachsten vermessen werden kann, wenn es vollständig zwischen die horizontalen 0% und 100% Punkt-Linien des Rasters gelegt wird. | ||
+ | Die horizontale Verschiebung (0% Punkt wird auf eine vertikale Linie des Rasters gelegt) vereinfacht die Anstiegszeitmessung. | ||
+ | |||
+ | Wie kann man nun die Auswertung vornehmen? | ||
+ | Die '''Anstiegszeit bis zum Maximalwert (100%)''' beträgt 3,6 DIV, bei einer Zeitablenkung von 10µs beträgt sie somit '''36µs'''. Die weiteren ablesbaren Anstiegszeiten zeigt folgende Tabelle: | ||
+ | |||
+ | {| {{Blauetabelle}} | ||
+ | |Anstiegsgrad [%] | ||
+ | |DIV | ||
+ | |Anstiegszeit [µs] | ||
+ | |- | ||
+ | |10 | ||
+ | |0,1 | ||
+ | |1 | ||
+ | |- | ||
+ | |30 | ||
+ | |0,3 | ||
+ | |3 | ||
+ | |- | ||
+ | |50 | ||
+ | |0,4 | ||
+ | |4 | ||
+ | |- | ||
+ | |70 | ||
+ | |0,8 | ||
+ | |8 | ||
+ | |- | ||
+ | |90 | ||
+ | |1,5 | ||
+ | |15 | ||
+ | |- | ||
+ | |100 | ||
+ | |3,6 | ||
+ | |36 | ||
+ | |- | ||
+ | |} | ||
+ | |||
+ | Mit diesen Werten kann man dann Aussagen treffen. Beispiel: | ||
+ | '''Die 90% Anstiegszeit beträgt 15µs.''' | ||
+ | Das bedeutet: Das Signal benötigt 15µs, um 90% seiner Maximalspannung zu erreichen. | ||
====Amplitudenmessung==== | ====Amplitudenmessung==== | ||
+ | |||
+ | [[bild:Amplitude.JPG|640px]] | ||
+ | |||
+ | Die gezeigte symmetrische Rechteckspannung wurde in der Grundstellung des Oszilloskops aufgenommen. Da die CH1 Vertikalablenkung (Schalter CH1 VOLTS/DIV (7)) in seiner Grundstellung auf 0,5V/DIV eingestellt ist und 4,0 DIV gemessen wurden, beträgt die '''Amplitude 2,0V''' und kann berechnet werden als: | ||
+ | Amplitude = Vertikalablenkung * DIV | ||
+ | Die Einheit der Amplitude entspricht der Einheit des Werts der Vertikalablenkung [mV, V], die an der Skala des Schalters CH1 VOLTS/DIV (7) abzulesen ist. | ||
+ | |||
+ | Wenn man Amplituden-Angaben verwendet, findet man häufiger die '''Abkürzung "Vss"'''. Sie steht für "Volt-Spitze-Spitze". Gemeint ist, dass die Amplitude von der höchsten zur niedrigsten Spannung des Signals gemessen wurde. Unsere oben ermittelten 2,0V wurden ebenfalls von Spitze zu Spitze des Rechtecksignals gemessen. Der Wert kann also als '''2,0Vss''' angegeben werden. | ||
+ | |||
====X-Y-Messung==== | ====X-Y-Messung==== | ||
====Z-Messung==== | ====Z-Messung==== | ||
Zeile 477: | Zeile 530: | ||
<br/><br/> | <br/><br/> | ||
+ | ==Oszilloskop ABC== | ||
+ | ===ADD-Betrieb=== | ||
+ | ===Analog Oszilloskop=== | ||
+ | ===Digital Oszilloskop=== | ||
+ | ===Einkanal-Betrieb=== | ||
+ | ===Elektronenstrahl=== | ||
+ | ===Horizontalablenkung=== | ||
+ | |||
+ | [[bild:Horizontalablenkung.JPG|640px]] | ||
+ | |||
+ | ===Tastkopf=== | ||
+ | |||
+ | [[bild:Tastkopf_1.JPG|640px]] | ||
+ | |||
+ | ====Kabel==== | ||
+ | |||
+ | [[bild:Kabel.JPG|640px]] | ||
+ | |||
+ | ===Triggerung=== | ||
+ | |||
+ | [[bild:Triggerung.JPG|640px]] | ||
+ | |||
+ | ===Vertikalablenkung=== | ||
+ | |||
+ | [[bild:Vertikalablenkung.JPG|640px]] | ||
+ | |||
+ | ===X-Y-Betrieb=== | ||
+ | ===Z-Betrieb=== | ||
+ | ===Zweikanal-Betrieb=== | ||
+ | <br/><br/> | ||
[[Kategorie:Grundlagen]] | [[Kategorie:Grundlagen]] | ||
Zeile 483: | Zeile 566: | ||
=Autoren= | =Autoren= | ||
− | --[[Benutzer:Dirk|Dirk]] | + | --[[Benutzer:Dirk|Dirk]] 20:54, 19. Jul 2014 (CET) |
Aktuelle Version vom 27. Juli 2014, 20:23 Uhr
Inhaltsverzeichnis
Allgemein
Ein Oszilloskop-Tutorial gehört auch hier im RN-Wissen zu den Wunsch-Artikeln. Es gibt im Netz zwar auch schon gute Tutorials, aber hier soll versucht werden, möglichst einfach an das Thema heran zu gehen. Ich werde mich hauptsächlich mit dem analogen Oszilloskop am Beispiel des Voltcraft 630-2 beschäftigen. Die Bedienelemente dieses Oszilloskops werden sich ähnlich auch bei allen anderen Typen finden.
Ich würde mir wünschen, dass jemand den Abschnitt zum digitalen Oszilloskop übernimmt.
Analog Oszilloskop
Prinzip
Bedienelemente
Nummer | Bezeichnung | Funktion |
1 | CAL | Kalibrierspannung |
2 | INTEN | Helligkeit des Elektronenstrahls |
3 | FOCUS | Fokussierung auf das schärfste Bild |
4 | TRACE ROTATION | Abstimmung der horizontalen Spur mit den Rasterlinien |
5 | LED | Power Anzeige |
6 | POWER | Hauptschalter |
7 | CH1 VOLTS/DIV | CH1 Vertikalachsen-Empfindlichkeit |
8 | CH1 (X) | Vertikaler Eingang für CH1 und X-Achse im X-Y-Betrieb |
9 | CH1 VARIABLE | CH1 Empfindlichkeit Feineinstellung |
10 | CH1 AC-GND-DC | CH1 Eingangswahlschalter |
11 | CH1 ^ v POSITION | CH1 Vertikale Positionierung |
12 | ALT/CHOP | Anzeigeart im Zweikanal-Modus |
13 | CH1 DC BAL | CH1 Dämpferabgleich |
14 | VERT MODE | Auswahl der Betriebsart |
15 | GND | Masseanschluss des Gehäuses |
16 | CH2 INV | Eingangssignal von CH2 wird invertiert |
17 | CH2 DC BAL | CH2 Dämpferabgleich |
18 | CH2 AC-GND-DC | CH2 Eingangswahlschalter |
19 | CH2 ^ v POSITION | CH2 Vertikale Positionierung |
20 | CH2 (Y) | Vertikaler Eingang für CH2 und Y-Achse im X-Y-Betrieb |
21 | CH2 VARIABLE | CH2 Empfindlichkeit Feineinstellung |
22 | CH2 VOLTS/DIV | CH2 Vertikalachsen-Empfindlichkeit |
23 | SOURCE | Auswahl des externen oder internen Triggersignals |
24 | EXT TRIG IN | Eingangsbuchse für externes Triggersignal |
25 | TRIGGER MODE | Auswahl des Triggermodus |
26 | SLOPE | Auswahl der Triggerflanke |
27 | TRIG.ALT | Internes Triggersignal alterniert zwischen CH1 und CH2 |
28 | LEVEL | Bestimmung des Startpunktes für die Wellenform |
29 | TIME/DIV | Wahl der Ablenkzeiten |
30 | SWP.VAR | Feineinstellung der Ablenkzeit |
31 | x10 MAG | Vergrößerung um den Faktor 10 |
32 | < > POSITION | Einstellung der horizontalen Position |
33 | FILTER | Filter zum einfachen Ablesen der Wellenformen |
Nummer | Bezeichnung | Funktion |
34 | Z AXIS INPUT | Eingangsbuchse für externes Intensitätsmodulationssignal |
35 | CH1 SIGNAL OUTPUT | CH1 Ausgangssignal für Frequenzmesser |
36 | Ständer | |
37 | SICHERUNG & Netzspannungswahlschalter | |
38 | AC Eingangsbuchse |
Nummer | Bezeichnung | Funktion |
1 | BNC-Buchse | Tastkopf-Ausgangsbuchse |
2 | GND-Anschluß | GND-Eingang des Tastkopfes |
3 | Kompensations-Trimmer | Trimmer z.B. 10..60pF |
4 | Teilungsfaktor-Schiebeschalter | Schiebeschalter z.B. 1:1 bzw. 10:1 |
Grundeinstellungen
Wenn man neue Messungen beginnen will, sollte man das Oszilloskop vor dem Einschalten in die Grundeinstellung bringen.
Einkanal-Betrieb
Nummer | Bezeichnung | Einstellung |
2 | INTEN | Mittelstellung |
3 | FOCUS | Mittelstellung |
7 | CH1 VOLTS/DIV | 0.5V/DIV |
9 | CH1 VARIABLE | CAL (Position im Uhrzeigersinn) |
10 | CH1 AC-GND-DC | GND |
11 | CH1 ^ v POSITION | Mittelstellung |
14 | VERT MODE | CH1 |
16 | CH2 INV | OFF |
18 | CH2 AC-GND-DC | GND |
19 | CH2 ^ v POSITION | Mittelstellung |
21 | CH2 VARIABLE | CAL (Position im Uhrzeigersinn) |
22 | CH2 VOLTS/DIV | 0.5V/DIV |
23 | SOURCE | CH1 |
25 | TRIGGER MODE | AUTO |
26 | SLOPE | + |
27 | TRIG.ALT | OFF |
29 | TIME/DIV | 0.5ms/DIV |
30 | SWP.VAR | CAL |
31 | x10 MAG | OFF |
32 | < > POSITION | Mittelstellung |
Zweikanal-Betrieb
Für den Zweikanal-Betrieb wählt man zunächst alle Einstellungen des Einkanal-Betriebs.
Nummer | Bezeichnung | Einstellung |
14 | VERT MODE | DUAL |
ADD-Betrieb
Für den ADD-Betrieb wählt man zunächst alle Einstellungen des Einkanal-Betriebs.
Nummer | Bezeichnung | Einstellung |
14 | VERT MODE | ADD |
X-Y-Betrieb
Für den X-Y-Betrieb wählt man zunächst alle Einstellungen des Einkanal-Betriebs.
Nummer | Bezeichnung | Einstellung |
29 | TIME/DIV | X-Y (Position gegen den Uhrzeigersinn) |
Inbetriebnahme
Power
Wenn der Netzspannungswahlschalter (37) einmalig auf die richtige Netzspannung (AC 115V oder 230V) und die Grundeinstellung für den Einkanal- oder Zweikanal-Betrieb eingestellt wurde, kann das Oszilloskop mit dem Hauptschalter (6) eingeschaltet werden. Die POWER LED (5) leuchtet auf.
Strahlabgleich
Nach dem Einschalten des Oszilloskops in der Grundstellung "Einkanal-Betrieb" sollte nach höchstens 20 Sekunden die horizontale Strahllinie auf dem Bildschirm erscheinen. Ist dies nicht der Fall, dann zunächst den INTEN Helligkeits-Regler (2) weiter nach rechts drehen bis die Linie erscheint. Gut eingestellt ist die Helligkeit, wenn die Linie deutlich zu erkennen aber nicht überstrahlt ist.
Sieht die Strahllinie nicht scharf begrenzt aus, kann man die Schärfe noch mit dem FOCUS Regler (3) optimal einstellen. Dies ist der Fall, wenn die Linie möglichst dünn aussieht.
Nun sollte die Strahllinie noch richtig ausgerichtet werden:
- Vertikale Lage: Die Strahllinie mit dem CH1 ^v POSITION Regler (11) mit der mittleren horizontalen Rasterlinie in Deckung bringen.
- Horizontale Lage: Die Strahllinie mit dem <> POSITION Regler (32) so in die Mitte des Bildschirms legen, dass das Strahlende rechts und links nicht mehr sichtbar ist.
- Rotation: Wenn der Strahl nicht parallel zur mittleren horizontalen Rasterlinie verläuft, sondern sie in einem Winkel kreuzt, dann muss die Strahl-Rotation noch eingestellt werden. Mit einem kleinen Schlitz-Schraubendreher stellt man die Rotation vorsichtig am Regler TRACE ROTATION (4) ein. Diese Einstellung muss man i.d.R. nur einmalig vornehmen und nicht bei jeder Inbetriebnahme. Anschließend muss man die vertikale Lage ggf. noch einmal korrigieren.
Tastkopfabgleich
Der Oszilloskop-Tastkopf ist ein wesentlicher Bestandteil des "Messsystems" Oszilloskop. Es gibt hohe Qualitätsunterschiede bei den Tastköpfen. Es lohnt sich, hierfür etwas mehr Geld auszugeben. Für die Messaufgaben, die im Bereich der Niederspannungs-Elektronik und Microcontroller-Technik anliegen, reicht ein passiver Tastkopf mit 10:1 Teilung. Wenn man die Tastköpfe erstmals benutzt, sollte man sich die Zeit nehmen, sie einzeln zu kalibrieren. Dies ist nur einmalig und nicht bei jeder Inbetriebnahme nötig.
Verfahren (passiver Tastkopf mit 10:1 Teilung):
- Oszilloskop in die Einkanal-Grundeinstellung bringen und einschalten
- Den Oszilloskop-Tastkopf an die CH1 Eingangsbuchse (8) anschließen
- Die Tastkopf-Spitze an den Kalibrierausgang CAL (1) anklemmen
- Den Schalter CH1 VOLTS/DIV (7) in Stellung 50 mV bringen
- Den Teilungsfaktor-Schiebeschalter am Oszilloskop-Tastkopf in Stellung "10" bringen
- Den CH1 Eingangswahlschalter (10) in Stellung "AC" bringen
- Mit einem kleinen Schlitz-Schraubendreher am Kompensations-Trimmer des Oszilloskop-Tastkopfs das Signal möglichst gut als Rechtecksignal abgleichen. Wenn die obere und untere Strahllinie abgerundet oder zipflig ausgezogen wirkt, ist die Einstellung noch nicht optimal.
- Nach der Kalibrierung das Oszilloskop wieder in die Einkanal-Grundeinstellung bringen
- Den Teilungsfaktor-Schiebeschalter am Oszilloskop-Tastkopf wieder in Stellung "1" bringen
Test-Messung
Der Oszilloskop-Tastkopf wird nun an die CH1 Eingangsbuchse (8) angeschlossen. Verfügt der Tastkopf über einen kleinen Teilungsfaktor-Schiebeschalter beschriftet mit "1" und "10", dann wird dieser Schiebeschalter in seine Grundstellung "1" gebracht. Die Messspitze wird dann an den Kalibrierausgang CAL (1) angeklemmt.
Wenn die Grundstellung richtig vorgenommen wurde, darf sich zunächst am Bildschirm nichts verändern, d.h. die Strahllinie ist unverändert in der Mitte zu sehen.
Grund: Die CH1 Eingangsbuchse (8) ist noch vom (Oszilloskop-internen) CH1 Vorverstärker (CH1 PREAMP) abgekoppelt und der Eingang dieses Verstärkers liegt an GND. Erst wenn man den CH1 Eingangswahlschalter (10) aus der Grundstellung "GND" nach oben in die Stellung "AC" schiebt, verändert sich die Bildschirm-Ausgabe: Es ist das Rechteck-Signal des Kalibrierausgangs CAL (1) zu sehen.
Die CH1 & CH2 Eingangswahlschalter (10, 18) sind also sehr wichtig! In der Stellung "GND" ist das Oszilloskop gut geschützt. Man sollte den/die Eingangswahlschalter nur zum eigentlichen Messbetrieb in die Stellung "AC" oder "DC" bringen und sonst in der Grundstellung "GND" lassen.
Aus dem selben Grund des Messgerät-Schutzes sollte der TIME/DIV Schalter (29) nie dauerhaft in der Stellung "X-Y" stehen.
Messbetrieb
Welche Parameter kann ein Oszilloskop messen? Das Oszilloskop ist ein Spannungsmessinstrument, das den Spannungsverlauf auch zeitabhängig darstellen kann. Darüber hinaus kann es zwei (mit Einschränkungen sogar 3) Spannungen abhängig voneinander darstellen. Durch die zeitabhängige Darstellung von regelmäßig wiederkehrenden Spannungsverläufen kann man auch deren Frequenz und Impulslängen messen bzw. errechnen. Bei zweistrahligen Oszilloskopen kann man zusätzlich Amplituden, Impulslängen und Frequenzen von zwei verschiedenen Signalquellen quasi parallel darstellen und vergleichen.
Impulslängenmessung
Die gezeigte symmetrische Rechteckspannung wurde in der Grundstellung des Oszilloskops aufgenommen. Die ausgehend von der Grundlinie nach oben abgehenden (positiven) Impulse 1 und 2 sind vollständig abgebildet, zwei weitere Impulse sind "abgeschnitten". Somit kann man die Breite der Impulse (= Abstand zwischen der ansteigenden und der abfallenden Flanke) ermitteln. In der Grundstellung ist die Zeitablenkung (Schalter TIME/DIV (29)) auf 0,5ms/DIV eingestellt. Das bedeutet, dass der Elektronen-Strahl des Oszilloskops 0,5ms braucht, um horizontal ein Kästchen (DIV) des Rasters auf dem Bildschirm zu durchqueren. Insgesamt gibt es 10 Kästchen auf dem Bildschirm, so dass der Elektronen-Strahl 5ms braucht, um den Bildschirm einmal zu durchlaufen. Gibt es in dieser Zeit Spannungsimpulse am CH1 Eingang, dann werden diese Impulse durch die Vertikalauslenkung sichtbar. Unsere zwei vollständig sichtbaren Impulse haben eine Breite von genau 1,0 DIV (= 1 Kästchen). Zur genaueren Ablesung ist jedes Kästchen horizontal und vertikal noch einmal mit kürzeren Markierungen unterteilt, wobei jede kurze Markierung 0,2 DIV entspricht. Damit kann man Werte auf +- 0,1 DIV genau ablesen. Addiert man in unserem Fall die kürzeren Markierungen zwischen den beiden roten Strichen (= Breite der Rechteck-Impulse), dann kommt man auf 4 kürzere Markierungen zwischen den roten Strichen, also auf 5 mal 0,2 DIV gleich 1,0 DIV.
Was bedeutet nun eine Breite der Impulse von 1,0 DIV? Da unsere Zeitablenkung auf 0,5ms/DIV eingestellt ist, beträgt die Impulslänge 0,5ms.
Formel: Impulslänge = Zeitablenkung * DIV
Die Einheit der Impulslänge entspricht der Einheit des Werts der Zeitablenkung [µs, ms, s], die an der Skala des Schalters TIME/DIV (29) abzulesen ist.
Frequenzmessung
Die gezeigte symmetrische Rechteckspannung wurde in der Grundstellung des Oszilloskops aufgenommen. Es sind 2 Perioden des Rechtecksignals vollständig abgebildet und lassen sich auswerten. Als eine Periodendauer bezeichnet man -vereinfacht gesagt- den Abstand zweier identischer Punkte einer Schwingung. Wenn man unsere Rechteckspannung im Bereich der Grundlinie (lila) betrachtet, dann kann man als ersten Messpunkt den Punkt nehmen, an dem die abfallende Flanke des Signals die Grundlinie schneidet (erste rote Markierung links). Der nächste identische Punkt der Schwingung wäre dann ebenfalls auf der Grundlinie an der folgenden abfallenden Flanke zu finden (zweite rote Markierung von links). Der Abstand zwischen den beschriebenen roten Markierungen beträgt 2,0 DIV. Genau so kann man auch die 2. Periode vermessen (hier wurden jeweils die ansteigenden Flanken zur Vermessung benutzt!),- auch sie weist eine Periodendauer von 2,0 DIV auf.
Was bedeutet nun eine Periodendauer von 2,0 DIV? Da unsere Zeitablenkung auf 0,5ms/DIV eingestellt ist, beträgt die Periodendauer 2 x 0,5ms = 1ms. Wir wollen aber die Frequenz ermitteln:
Formel: Frequenz = 1 / (Zeitablenkung * DIV)
Die Einheit der Frequenz [MHz, kHz, Hz] ergibt sich aus der Einheit des Werts der Zeitablenkung [µs, ms, s], die an der Skala des Schalters TIME/DIV (29) abzulesen ist:
Zeitablenkung | Frequenz |
µs | MHz |
ms | kHz |
s | Hz |
Bei unserem Beispiel errechnet sich also die Frequenz als 1 kHz:
Frequenz [kHz] = 1 / (0,5 [ms] * 2,0) = 1 = 1000 [Hz]
Anstiegszeitmessung
Eine häufig benötigte Angabe ist, wie schnell ein Signal von 0% auf 100% seiner Maximalspannung ansteigt. Dazu ist das Oszilloskop gut geeignet,- allerdings kommt ggf. auch ein Oszilloskop an seine Grenzen, wenn eine sehr schnelle Anstiegszeit (rise time) gemessen werden muss.
Die gezeigte Anstiegsflanke wurde mit der Grundstellung des Oszilloskops aufgenommen mit folgenden Änderungen:
- Die Zeitablenkung (Schalter TIME/DIV (29)) wird auf 10µs eingestellt
- Den Teilungsfaktor-Schiebeschalter am Oszilloskop-Tastkopf in Stellung "10" bringen
- Die Amplitude des Signals wird mit dem Schalter CH1 VOLTS/DIV (7) und falls nötig zusätzlich mit der CH1 Empfindlichkeitseinstellung CH1 VARIABLE (9) so eingestellt, dass sie genau zwischen den horizontalen 0% und 100% Punkt-Linien des Rasters auf dem Bildschirm liegt
- Die horizontale Lage des Signals wird mit dem Regler <> POSITION (32) so verschoben, dass der Anfangspunkt der ansteigenden Flanke (0%) auf der ersten vertikalen Rasterlinie von Links liegt (vereinfacht die Anstiegszeitmessung).
Warum diese Einstellungen? Die Einstellung der Zeitablenkung richtet sich nach der Steilheit der Flanke. Sie ist so einzustellen, dass man die Anstiegszeit zwischen 0% und 100% gut darstellen und messen kann. Der Teilungsfaktor des Tastkopfes wird auf "10" gestellt, da die Eigen-Anstiegszeit des Oszilloskops (mit Tastkopf) in dieser Stellung nur ein Zehntel der Stellung "1" beträgt. Damit minimiert sich der Messgeräte-Fehler. Die Amplitudenanpassung des Signals erfolgt, weil es am einfachsten vermessen werden kann, wenn es vollständig zwischen die horizontalen 0% und 100% Punkt-Linien des Rasters gelegt wird. Die horizontale Verschiebung (0% Punkt wird auf eine vertikale Linie des Rasters gelegt) vereinfacht die Anstiegszeitmessung.
Wie kann man nun die Auswertung vornehmen? Die Anstiegszeit bis zum Maximalwert (100%) beträgt 3,6 DIV, bei einer Zeitablenkung von 10µs beträgt sie somit 36µs. Die weiteren ablesbaren Anstiegszeiten zeigt folgende Tabelle:
Anstiegsgrad [%] | DIV | Anstiegszeit [µs] |
10 | 0,1 | 1 |
30 | 0,3 | 3 |
50 | 0,4 | 4 |
70 | 0,8 | 8 |
90 | 1,5 | 15 |
100 | 3,6 | 36 |
Mit diesen Werten kann man dann Aussagen treffen. Beispiel:
Die 90% Anstiegszeit beträgt 15µs.
Das bedeutet: Das Signal benötigt 15µs, um 90% seiner Maximalspannung zu erreichen.
Amplitudenmessung
Die gezeigte symmetrische Rechteckspannung wurde in der Grundstellung des Oszilloskops aufgenommen. Da die CH1 Vertikalablenkung (Schalter CH1 VOLTS/DIV (7)) in seiner Grundstellung auf 0,5V/DIV eingestellt ist und 4,0 DIV gemessen wurden, beträgt die Amplitude 2,0V und kann berechnet werden als:
Amplitude = Vertikalablenkung * DIV
Die Einheit der Amplitude entspricht der Einheit des Werts der Vertikalablenkung [mV, V], die an der Skala des Schalters CH1 VOLTS/DIV (7) abzulesen ist.
Wenn man Amplituden-Angaben verwendet, findet man häufiger die Abkürzung "Vss". Sie steht für "Volt-Spitze-Spitze". Gemeint ist, dass die Amplitude von der höchsten zur niedrigsten Spannung des Signals gemessen wurde. Unsere oben ermittelten 2,0V wurden ebenfalls von Spitze zu Spitze des Rechtecksignals gemessen. Der Wert kann also als 2,0Vss angegeben werden.
X-Y-Messung
Z-Messung
Digital Oszilloskop
Wer möchte diesen Abschnitt übernehmen?
Prinzip
Bedienelemente
Grundeinstellungen
Einkanal-Betrieb
Zweikanal-Betrieb
ADD-Betrieb
X-Y-Betrieb
Inbetriebnahme
Power
Tastkopfabgleich
Test-Messung
Mess-Betrieb
Impulslängenmessung
Frequenzmessung
Anstiegszeitmessung
Amplitudenmessung
X-Y-Messung
Z-Messung
Oszilloskop ABC
ADD-Betrieb
Analog Oszilloskop
Digital Oszilloskop
Einkanal-Betrieb
Elektronenstrahl
Horizontalablenkung
Tastkopf
Kabel
Triggerung
Vertikalablenkung
X-Y-Betrieb
Z-Betrieb
Zweikanal-Betrieb
Autoren
--Dirk 20:54, 19. Jul 2014 (CET)