Dirk (Diskussion | Beiträge) |
Dirk (Diskussion | Beiträge) |
||
Zeile 320: | Zeile 320: | ||
MIC/ADC0: | MIC/ADC0: | ||
Es muss eine kurze Leiterbahn zwischen zwei Lötpunkten aufgetrennt werden, die sich zwischen R2 und C19 befinden. Die Leiterbahn muss mit einem scharfen Messer oder einem speziellen Leiterbahn-Unterbrecher zwischen den beiden Lötpunkten unterbrochen werden. Man sollte anschließend mit einem Widerstandsmeßgerät nachmessen: Es sollte keine Verbindung mehr bestehen. Vorsicht: Nicht R2 beschädigen! Damit ist das Mikrofon auf der M32 ohne Funktion und ADC0 kann anders genutzt werden. ADC0 ist dann am oberen Lötpunkt zwischen R2 und C19 verfügbar, dort müßte eine Kabelverbindung angelötet werden. | Es muss eine kurze Leiterbahn zwischen zwei Lötpunkten aufgetrennt werden, die sich zwischen R2 und C19 befinden. Die Leiterbahn muss mit einem scharfen Messer oder einem speziellen Leiterbahn-Unterbrecher zwischen den beiden Lötpunkten unterbrochen werden. Man sollte anschließend mit einem Widerstandsmeßgerät nachmessen: Es sollte keine Verbindung mehr bestehen. Vorsicht: Nicht R2 beschädigen! Damit ist das Mikrofon auf der M32 ohne Funktion und ADC0 kann anders genutzt werden. ADC0 ist dann am oberen Lötpunkt zwischen R2 und C19 verfügbar, dort müßte eine Kabelverbindung angelötet werden. | ||
− | Soll das Mikrofon später doch wieder an ADC0 angeschlossen werden, verbindet man die beiden Lötpunkte zwischen R2 und C19 einfach mit etwas Lötzinn. | + | Soll das Mikrofon später doch wieder an ADC0 angeschlossen werden, verbindet man die beiden Lötpunkte zwischen R2 und C19 einfach mit etwas Lötzinn oder mit einem SMD Null Ohm Widerstand. |
KEYPAD/ADC1: | KEYPAD/ADC1: |
Version vom 28. Mai 2008, 16:35 Uhr
In den nächsten Tagen finden sich hier - hoffentlich alle - Informationen zum RP6, die nicht nur Vorab-Status haben. Also - öfters mal reinschauen ...
Was bisher geschah:
Mon, 02 Jul 2007 23:00 - Benachrichtigung der Tester
Die, 03 Jul 2007 15:00 - Bereitstellung der Dokumentation
Don, 05 Jul 2007 14:30 - Bereitstellung der Schaltungsunterlagen
Son, 08 Jul 2007 16:00 - Nachricht über den Versand
Mon, 09 Jul 2007 00:15 - Bereitstellung der Library und der Beispielprogramme
Die, 10 Jul 2007 - Eintreffen der RP6 bei den Testern
Der von Arexx entwickelte RP6 ist ein autonomes Raupenfahrzeug, das nicht nur für Schüler und Studenten zum Einstieg in das Gebiet Robotik sondern auch für Fortgeschrittene Elektroniker und Bastler sehr gut geeignet ist, da das System für selbstentworfene Erweiterungen ausgelegt ist. Der RP6 wird von einem, unter Roboterentwicklern beliebten, AVR Microcontroller von Atmel gesteuert und hat Lichtsensoren in Form von zwei LDRs, 2 Bumper an der Stoßstange, 6 Status LEDs, Sensoren zur Überwachung der Akkuspannung, Drehgeber mit 625 CPR, ein Infrarot Sensor zur Hinderniserkennung und Kommunikation und Motorstromsensoren zur Verfügung. Zudem liegt dem Roboter eine umfangreiche Anleitung, inklusive einem kleinen C-Crashkurs, ein USB-Interface zum Anschluss an den PC und ein USB Kabel bei.
Inhaltsverzeichnis
Technische Daten
Mikrocontroller: | AVR ATmega32 |
Speicher: | 32 kB Flash-Speicher, davon 1 kB bereits vom Bootloader belegt 2 kB RAM |
Programmierung: | Über AVR-Bootloader, belegt ca. 1 kB des Flash-Speichers |
Vorhandene Sensoren: | 2 Lichtsensoren (LDR) |
Abmessungen: | (L × B × H) 172 × 128 × 50 mm |
Ausführung: | Fertig aufgebauter Roboter |
Stromversorgung: | 6 AA NiMH Akkus |
Hersteller: | Arexx Niederlande |
Erweiterungen und Zubehör
Es sind von Arexx schon zwei Erweiterungsmöglichkeiten auf dem Markt. Zum Ersten die Experimentierplatinen (191537), die zum Erstellen von eigenen Schaltungen und Sensoren gedacht sind, und von denen eine schon im Lieferumfang enthalten ist, und ein Erweiterungsboard RP6 CONTROL M32 (191550), welches einen weiteren AVR Controller, der doppelt so schnell getaktet wird wie der Controller vom Mainboard, einen Piezo-Schallwandler, 4 weitere LEDs, 5 Taster, mehr EEPROM Speicher und ein Mikrofon sowie eine Ansteckmöglichkeit für ein LC-Display bietet. Das Board kann man dann über den I2C Bus mit dem Mainboard kommunizieren lassen. Basierend auf dem Master-Slave System könnte man so bis zu 127 Slaves anschließen. Zudem ist es ratsam, qualitativ hochwertige Akkus und ein Ladegerät mit passendem Stecker zu verwenden, da man ansonsten immer das Mainboard abschrauben müsste um an die Akkus heranzukommen. Für den Fall wurde extra eine Ladebuchse eingebaut.
Experimentierplatine
RP6 CONTROL M32 Platine
Umbau-Optionen
Dieser Absatz soll die RP6 CONTROL M32 Platine (im Folgenden "M32" genannt) nicht im Detail beschreiben, sondern die Möglichkeiten auflisten, die es gibt, um auf einfache Weise weitere Anschlüsse oder Verbindungen zu ermöglichen. Nicht beschrieben werden die Anschlußmöglichkeiten, die in Form der vorhandenen Wannenstecker sowieso gegeben sind (z.B. am LCD-, I/O- oder ADC-Stecker).
Folgende Möglichkeiten zum Umbau/Ausbau sind vorgesehen:
- 1) Zweites SPI-EEPROM (IC5)
- 2) Zwei analoge Sensoren, evtl. mit getrennter Stromversorgung
- 3) ISP (In System Programming)
- 4) JTAG-Programmierung
- 5) USRBUS
- 6) IRQ-Zuweisung ändern
- 7) ADC0 und ADC1 anders nutzen
- 8) Schieberegister kaskadieren
Im folgenden Text soll beschrieben werden, wie man die weiteren Möglichkeiten nutzen kann. Es wird jeweils erwähnt, was man an Material braucht. Beispielhaft sind da Bestell-Nummern der Firma CONRAD genannt. Natürlich kann man die Teile auch bei anderen Versendern beziehen. Durch die Nennung der Bestell-Nummer ist das jeweilige Teil aber gut zu identifizieren. Man sollte Löten können und sich bewußt sein, dass ggf. ein Garantieanspruch nicht mehr besteht, wenn man an der Platine gelötet hat.
Zweites SPI-EEPROM
Es ist sehr einfach, ein zweites SPI-EEPROM auf der M32 zu nutzen.
Man braucht dazu:
- Einen IC-Sockel 8-pol DIP für IC5 (189600-36)
- Einen Keramik-Vielschicht-Kondensator 100nF (C19); RM 2,54mm (453099-36)
- Ein serielles SPI-EEPROM im PDIP8 Gehäuse (IC5)
Zuerst wird der IC-Sockel eingelötet (Kerbe beachten!), dann C19. Das war's.
Leider gibt es das EEPROM nicht bei den gängigeren Versendern. Bekommen kann man es aber z.B. bei Farnell. Dort hat das SPI-EEPROM mit 256 kbit die Bezeichnung 25LC256-I/P (1331398). Wenn man es noch größer mag: 25LC1024 (1331392) mit 1024 kbit.
Programmierung:
In die RP6ControlLib.h bitte einfügen:
#define SPI_EEPROM2_PAGESIZE 64 uint8_t SPI_EEPROM2_readByte(uint16_t memAddr); void SPI_EEPROM2_writeByte(uint16_t memAddr, uint8_t data); void SPI_EEPROM2_enableWrite(void); void SPI_EEPROM2_disableWrite(void); uint8_t SPI_EEPROM2_getStatus(void); void SPI_EEPROM2_writeBytes(uint16_t startAddr, uint8_t *buffer, uint8_t length); void SPI_EEPROM2_readBytes(uint16_t startAddr, uint8_t *buffer, uint8_t length);
Die Konstante SPI_EEPROM2_PAGESIZE ist abhängig von der Art und Größe des EEPROMs. Für ein 256 kbit-EEPROM ist die Seitengröße (pagesize) in der Regel 64, für einen 512 kbit-Typ 128 und für einen 1024 kbit-Typ 256.
In die RP6ControlLib.c bitte einfügen:
/*****************************************************************************/ // Second external SPI EEPROM: /** * Reads a single Byte from the 2nd external EEPROM. */ uint8_t SPI_EEPROM2_readByte(uint16_t memAddr) { uint8_t data; PORTB &= ~MEM_CS2; writeSPI(SPI_EEPROM_READ); writeWordSPI(memAddr); data = readSPI(); PORTB |= MEM_CS2; return data; } /** * Reads "length" Bytes into the Buffer "buffer" from startAdr on. * You can read the complete 2nd EEPROM into a buffer at once - if it is large enough. * (But you only have 2KB SRAM on a MEGA32 ;) ) */ void SPI_EEPROM2_readBytes(uint16_t startAddr, uint8_t *buffer, uint8_t length) { PORTB &= ~MEM_CS2; writeSPI(SPI_EEPROM_READ); writeWordSPI(startAddr); readBufferSPI(&buffer[0], length); PORTB |= MEM_CS2; } /** * Enable Write Mode */ void SPI_EEPROM2_enableWrite(void) { PORTB &= ~MEM_CS2; writeSPI(SPI_EEPROM_WREN); PORTB |= MEM_CS2; } /** * Disable Write Mode */ void SPI_EEPROM2_disableWrite(void) { PORTB &= ~MEM_CS2; writeSPI(SPI_EEPROM_WRDI); PORTB |= MEM_CS2; } /** * Write a single data byte to the specified 2nd EEPROM address. */ void SPI_EEPROM2_writeByte(uint16_t memAddr, uint8_t data) { while(SPI_EEPROM2_getStatus() & SPI_EEPROM_STAT_WIP); SPI_EEPROM2_enableWrite(); PORTB &= ~MEM_CS2; writeSPI(SPI_EEPROM_WRITE); writeWordSPI(memAddr); writeSPI(data); PORTB |= MEM_CS2; } /** * Write "length" Bytes from the Buffer to the 2nd EEPROM. * YOU CAN ONLY WRITE MAXIMAL [SPI_EEPROM2_PAGESIZE] BYTES AT ONCE!!! * This is the Pagesize! * You can NOT cross a page boundary! * */ void SPI_EEPROM2_writeBytes(uint16_t startAddr, uint8_t *buffer, uint8_t length) { while(SPI_EEPROM2_getStatus() & SPI_EEPROM_STAT_WIP); SPI_EEPROM2_enableWrite(); PORTB &= ~MEM_CS2; writeSPI(SPI_EEPROM_WRITE); writeWordSPI(startAddr); writeBufferSPI(&buffer[0], length); PORTB |= MEM_CS2; } /** * Returns EEPROM Status register - for checking if 2nd EEPROM is buisy. * Writing takes about 5ms. */ uint8_t SPI_EEPROM2_getStatus(void) { uint8_t status; PORTB &= ~MEM_CS2; writeSPI(SPI_EEPROM_RDSR); status = readSPI(); PORTB |= MEM_CS2; return status; } /*****************************************************************************/
Hinweis zum 1024 kbit-EEPROM:
Dieses EEPROM benötigt 24-Bit Adressen und muss daher etwas anders angesprochen werden als die "kleineren" Typen bis 512 kbit. Die Funktion SPI_EEPROM2_readByte() sieht für ein 1024 kbit-EEPROM z.B. so aus:
uint8_t SPI_EEPROM2_readByte(uint32_t memAddr) { uint8_t data; PORTB &= ~MEM_CS2; writeSPI(SPI_EEPROM_READ); writeSPI((uint8_t)(memAddr >> 16)); writeWordSPI((uint16_t)memAddr); data = readSPI(); PORTB |= MEM_CS2; return data; }
Alle weiteren Funktionen, die EEPROM-Adressen verwenden (SPI_EEPROM2_readBytes, SPI_EEPROM2_writeByte, SPI_EEPROM2_writeBytes), müssen genau so angepasst werden.
Zwei analoge Sensoren, evtl. mit getrennter Stromversorgung
Wenn man bis zu zwei analoge Sensoren (z.B. IR-Distanz-Mess-Sensoren Sharp GP2Y0A02YK 185364-36) mit höherem Stromverbrauch direkt an die M32 anschließen möchte, dann gibt es da zwei 3-polige Kontakte, beschriftet mit VDD/GND/ADCx (x = 2..3). Hier kann man 3-polige Stiftleisten auflöten, an die dann die Sensoren angeschlossen werden.
Vor dem Umbau sollte klar sein, ob man für die Sensoren eine getrennte Stromversorgung anschließen möchte, oder ob die 5V-Versorgung des RP6 mit benutzt werden soll.
Man braucht dazu:
- 1-reihige Stiftleiste RM 2,54mm (z.B. 36-polig 732478-36)
- Zwei Keramik-Vielschicht-Kondensatoren 100nF (C16, C17); RM 2,54mm (453099-36)
- Ein Elektrolyt-Kondensator stehend 470 uF / 16V (C18); RM 3,5mm (446211-36)
- Zwei 3-polige Steckbuchsen mit Litze zum Anschluß der Sensoren (z.B. aus 976261-36)
- Evtl.: Eine Codierbrücke (z.B. aus Set 742902-36)
- Evtl.: Eine 1-polige Steckbuchse mit Litze zur ext. Stromversorgung (z.B. aus 976261-36)
Wenn man eine GETRENNTE Stromversorgung für die beiden Sensoren vorsehen will oder mit Codierbrücke die RP6-Stromversorgung für die beiden Sensoren abschaltbar machen möchte, muss man erst etwas Vorarbeit leisten:
Es muss eine kurze Leiterbahn zwischen den Punkten "SV1" und "SV2" aufgetrennt werden. Die Leiterbahn befindet sich auf der Lötseite der Platine und muss mit einem scharfen Messer oder einem speziellen Leiterbahn-Unterbrecher zwischen den beiden Lötpunkten unterbrochen werden. Man sollte anschließend mit einem Widerstandsmeßgerät zwischen SV1 und SV2 nachmessen: Es sollte keine Verbindung mehr bestehen. Jetzt trennt man von der 1-reihigen Stiftleiste 2 Kontakte ab und lötet sie auf die Punkte SV1/SV2.
Wenn man keine getrennte Stromversorgung vorsehen will, geht es jetzt erst los: Man trennt von der 1-reihigen Stiftleiste zweimal 3 Kontakte ab und lötet sie auf die weiß umrahmten Kontakte (VDD/GND/ADCx), anschließend C16, C17 auf ihre Plätze und zum Schluß den Elko 470 uF (C18). Beim Elko auf die Polung achten: Er muss genau so sitzen wie sein Nachbar C1 (Minuspol schaut zum Beeper SND).
Die Sensoren lötet man an die Litzen der 3-poligen Steckbuchsen und steckt diese auf die neuen Kontakte. Wenn man auf SV1/SV2 eine Stiftleiste gelötet hat (s.o.), kann man hier zunächst die Codierbrücke aufstecken. Damit versorgt der RP6 Akku die Sensoren mit 5V an den Pins VDD. Möchte man später eine getrennte 5V-Spannung anlegen, zieht man einfach die Codierbrücke ab und speist die externe 5V-Spannung (mit einer 1-poligen Steckbuchse) am Pin SV2 ein. Achtung: An Pin SV1 wird dann nichts angeschlossen!
ISP (In System Programming)
Der ATMEGA32 der M32 wird standardmäßig über den PROG/UART Stecker programmiert. Dazu befindet sich im Prozessor ein Bootloader-Programm. Wenn man stattdessen oder zusätzlich die ISP-Programmierung mit einem dafür geeigneten ISP-Programmier-Adapter nutzen will, kann man den Adapter an den gewinkelten ISP-Stecker auf der M32 anschließen. Vorher sind aber ein paar "Umbauarbeiten" erforderlich.
Man braucht dazu:
- 1-reihige Stiftleiste RM 2,54mm (z.B. 36-polig 732478-36)
- Einen SMD-Widerstand 10 kOhm (406376-36)
- Eine Codierbrücke (z.B. aus Set 742902-36)
Der SMD-Widerstand wird auf seinen Platz (R1) neben dem XBUS2-Stecker gelötet. Zwischen R1 und C1 befinden sich drei Lötpunkte (beschriftet mit ISP/DEBUG - BOOTLOAD), auf die eine 3-polige Stiftleiste gelötet werden muss. Vorher muss eine kurze Leiterbahn zwischen den Lötpunkten BOOTLOAD aufgetrennt werden. Die Leiterbahn befindet sich auf der Lötseite der Platine und muss mit einem scharfen Messer oder einem speziellen Leiterbahn-Unterbrecher zwischen den beiden Lötpunkten unterbrochen werden. Man sollte anschließend mit einem Widerstandsmeßgerät nachmessen: Es sollte keine Verbindung mehr zwischen den Lötpunkten bestehen. Man trennt dann von der 1-reihigen Stiftleiste 3 Kontakte ab und lötet sie auf die beschriebenen drei Lötpunkte.
Wenn man jetzt eine Codierbrücke auf die mit "BOOTLOAD" beschrifteten Pins steckt, bleibt alles unverändert: Die Programmierung erfolgt weiter über den PROG/UART-Stecker mithilfe des Bootloaders im Prozessor. Wird die Codierbrücke in Stellung "ISP/DEBUG" umgesteckt, kann der Prozessor mit ISP programmiert werden.
Vorsicht: Das Bootloader-Programm kann dabei zerstört werden! Es müssen zusätzlich Fusebits des ATMEGA32 verändert werden. Dabei kann der Prozessor im schlimmsten Fall nicht mehr ansprechbar sein. Man sollte diesen Umbau und die ISP-Programmierung nur machen, wenn man genau weiß, was man macht!
Eine Kopie des Bootloaders und eine Kurzanleitung zum Einstellen der Fusebits gibt es hier: RP6_M32_BOOTLOADER
JTAG
Die Programmierung und ein Debuggen sind auch mit der JTAG-Schnittstelle möglich. Das ist nur zu empfehlen, wenn man Erfahrungen mitbringt, oder der Prozessor der M32 durch eine ISP-Falschprogrammierung z.B. nicht mehr ansprechbar ist. Um die JTAG-Schnittstelle nutzen zu können, muss der ISP-Umbau durchgeführt worden sein und die dort beschriebene Codierbrücke auf "ISP/DEBUG" gesteckt sein. Der JTAG-Programmer kann dann an die Lötpunkte "JTAG" zwischen ISP- und I/O-Stecker angeschlossen werden.
Man braucht dazu:
- 2-reihige Stiftleiste RM 2,54mm (z.B. 2x36-polig 742007-15)
Man trennt von der 2-reihigen Stiftleiste 2x5 Kontakte ab und lötet sie auf die 10 JTAG-Lötpunkte. Hier kann jetzt der JTAG-Programmer z.B. mit einem 10-poligen Flachkabel-Stecker angeschlossen werden. Um das JTAG-Interface des ATMEGA32 nutzen zu können, müssen Änderungen an den Fusebits vorgenommen werden.
Vorsicht: Man sollte die JTAG-Programmierung und Fusebit-Manipulationen nur machen, wenn man genau weiß, was man macht!
USRBUS
Die jeweils 14 Kontakte der beiden USRBUS-Stecker sind auf der M32 nirgendwo angeschlossen, sondern können über die Lötpunkte Y1..Y14 mit beliebigen Punkten auf der M32 verbunden werden.
Ich würde auf Y1..Y14 eine Stiftleiste löten, damit die USRBUS-Belegung geändert werden kann.
Man braucht dazu:
- 2-reihige Stiftleiste RM 2,54mm (z.B. 2x36-polig 742007-15)
- Einige Steckbuchsen mit Litze (z.B. aus 976261-36)
Man trennt von der 2-reihigen Stiftleiste 2x7 Kontakte ab und lötet sie auf die Punkte Y1..Y14 neben dem Wannenstecker USRBUS2. Wird die M32 über Flachkabel mit einem USRBUS-Stecker auf einer RP6 Experimentierplatine (EP) und/oder mit dem RP6 selbst verbunden, dann hat man mit allen mit dem USRBUS verbundenen Platinen eine direkte 14-polige Verbindung,- eben den "User Bus". Den kann man dann nutzen, wie man will. Auf der M32 kann man mit Steckbuchsen die Pins Y1..Y14 mit anderen Pins verbinden.
Beispiel: Verbindet man den Pin "ADC2" mit Y1 des USRBUS, dann steht der Eingang ADC2 auf allen an den USRBUS angeschlossenen Platinen zur Verfügung. Man braucht also diesen Eingang nicht über ein eigenes Kabel auf eine EP zu führen, sondern kann dazu den USRBUS nehmen. Dadurch bleibt der Gesamtaufbau auf dem RP6 übersichtlich und komplett trennbar (man braucht nur die Stecker XBUS und USRBUS abziehen!).
Wichtig: Man sollte gut dokumentieren, wie man den USRBUS am RP6 (vorn und hinten getrennt!), auf EPs und der M32 benutzt! Sonst kann es bei einer anderen Anordnung von EPs zu USRBUS Konflikten/Kurzschlüssen kommen.
IRQ-Zuweisung ändern
Am XBUS stehen vier Interrupt-Pins (genannt INT1..INT3, INTU) zur Verfügung. INT1 ist auf der RP6 Base mit PA4 verbunden, auf der M32 mit PD2 (Prozessor INT0) und soll hier nicht weiter betrachtet werden.
INT2 und INT3 sind auf der M32 mit den ATMEGA32-Pins PD3 und PB2 (M32-Prozessor INT1 und INT2) verbunden. INTU ist identisch mit INT2. Diese Belegung kann man durch drei Codierbrücken (beschriftet mit I2-INTU/INT3-I3/I2-INT2) ändern.
Man braucht dazu:
- 2-reihige Stiftleiste RM 2,54mm (z.B. 2x36-polig 742007-15)
- Drei Codierbrücken (z.B. aus Set 742902-36)
Vor dem Auflöten der Stiftleiste müssen zwei kurze Leiterbahnen zwischen zwei Lötpunkten aufgetrennt werden, und zwar zwischen den Lötpunkten INT3-I3 und I2-INT2. Die Leiterbahnen müssen mit einem scharfen Messer oder einem speziellen Leiterbahn-Unterbrecher zwischen den beiden Lötpunkten unterbrochen werden. Man sollte anschließend mit einem Widerstandsmeßgerät nachmessen: Es sollte keine Verbindung mehr zwischen INT3-I3 und I2-INT2 bestehen. Man trennt dann von der 2-reihigen Stiftleiste 2x3 Kontakte ab und lötet sie auf das weiß umrahmte Feld mit der o.g. Beschriftung.
Hier kann man jetzt drei Codierbrücken aufstecken, wenn man die Standard-Belegung beibehalten will. Wenn man keine der Codierbrücken aufsteckt, sind die Pins PD3 (I2) und PB2 (I3) des M32-Prozessors nicht mehr mit dem XBUS verbunden. Auf der M32 kann man dann z.B. auch andere Verbindungen zum XBUS herstellen, indem man auf die Pins INT2, INT3 oder INTU Kabelverbindungen aufsteckt.
ADC0 und ADC1 frei nutzen
Auf der M32 ist ADC0 fest mit dem Mikrofon (MIC) und ADC1 mit den Tastern T1..T5 (KEYPAD) verbunden. Wenn man diese ADC-Eingänge für andere Sensoren benötigt, kann man das Mikrofon und die Taster von den Eingängen abtrennen.
Man braucht dazu:
- 1-reihige Stiftleiste RM 2,54mm (z.B. 36-polig 732478-36)
- Eine Codierbrücke (z.B. aus Set 742902-36)
MIC/ADC0: Es muss eine kurze Leiterbahn zwischen zwei Lötpunkten aufgetrennt werden, die sich zwischen R2 und C19 befinden. Die Leiterbahn muss mit einem scharfen Messer oder einem speziellen Leiterbahn-Unterbrecher zwischen den beiden Lötpunkten unterbrochen werden. Man sollte anschließend mit einem Widerstandsmeßgerät nachmessen: Es sollte keine Verbindung mehr bestehen. Vorsicht: Nicht R2 beschädigen! Damit ist das Mikrofon auf der M32 ohne Funktion und ADC0 kann anders genutzt werden. ADC0 ist dann am oberen Lötpunkt zwischen R2 und C19 verfügbar, dort müßte eine Kabelverbindung angelötet werden. Soll das Mikrofon später doch wieder an ADC0 angeschlossen werden, verbindet man die beiden Lötpunkte zwischen R2 und C19 einfach mit etwas Lötzinn oder mit einem SMD Null Ohm Widerstand.
KEYPAD/ADC1: Es muss eine kurze Leiterbahn zwischen zwei Lötpunkten aufgetrennt werden, die sich unterhalb von R15 befinden. Die Leiterbahn befindet sich auf der Lötseite der Platine und muss mit einem scharfen Messer oder einem speziellen Leiterbahn-Unterbrecher zwischen den beiden Lötpunkten unterbrochen werden. Man sollte anschließend mit einem Widerstandsmeßgerät nachmessen: Es sollte keine Verbindung mehr bestehen. Jetzt trennt man von der 1-reihigen Stiftleiste 2 Kontakte ab und lötet sie auf die beiden Punkte unterhalb von R15. Hier kann man jetzt eine Codierbrücke aufstecken, wenn man die Taster weiter benutzen will. Wenn die Brücke abgezogen ist, sind die Taster ohne Funktion und ADC1 kann anders genutzt werden. ADC1 ist dann am linken Pin der 2-poligen Stiftleiste unterhalb von R15 verfügbar.
Schiebregister kaskadieren
Auf der M32 wird ein 8-Bit Schieberegister-Baustein (IC3: 74HC4094D) dazu gebraucht, vier Status-LEDs (LED1..LED4) und ein LCD (am Stecker LCD) anzusteuern. Durch Schieberegister kann man Port-Pins gewinnen, wenn die Pins des Prozessors nicht ausreichen.
Solche Schieberegister kann man "kaskadieren", d.h. weitere identische Bausteine einbauen, die weitere Port-Pins zur Verfügung stellen. Wenn man zusätzliche 74HC4094 einsetzen will, wird man das am besten auf einer EP aufbauen. Die Anschlüsse für diese Schieberegister werden auf der M32 an einer 6-poligen Reihe von Lötpunkten (beschriftet mit MISO, STR, MOSI, SCK, QS, QS*) links von IC3 zur Verfügung gestellt.
Wenn man diese 6 Signalleitungen auf eine EP führen will, gibt es dafür zwei Möglichkeiten:
- a) Direkte 6-polige Kabelverbindung von den oben beschriebenen Lötpunkten zur EP
- b) Nutzung des USRBUS, um die 6 Signale zur EP zu führen
Wenn man im Abschnitt "USRBUS" den entsprechenden Umbau gemacht hat, würde ich b) empfehlen! Man könnte dafür eine 6-polige Stiftleiste auf die o.g. Lötpunkte auflöten und 1:1 z.B. mit den Pins Y4, Y6, Y8, Y10, Y12, Y14 des USRBUS verbinden. Dann kann man auf der EP weitere Schieberegister- und SPI-Bausteine (z.B. SPI-EEPROMs, RFM12 Transceiver o.ä.) aufbauen.
Man braucht dazu:
- 1-reihige Stiftleiste RM 2,54mm (z.B. 36-polig 732478-36)
- Steckbuchsen mit Litze (z.B. aus 976261-36)
Man trennt von der 1-reihigen Stiftleiste 6 Kontakte ab und lötet sie auf die beschriebenen sechs Lötpunkte auf der M32. Mit den Steckbuchsen mit Litze wird dann die Verbindung entweder direkt zur EP (Option a) oder über den USRBUS zur EP (Option b) hergestellt.
Programmierung
Der Roboter kann frei in C programmiert werden, dies wird, durch die umfangreiche Funktionsbibliothek und die detailiert beschriebene Anleitung, auch Anfängern sehr leicht gemacht. Die Software die zur Programmierung verwendet wird, ist ausschließlich Freeware und kann entweder der CD entnommen oder aus dem Internet heruntergeladen werden. Ein Programm kann zum Beispiel so aussehen:
#include "RP6RobotBaseLib.h" int main(void) { initRobotBase(); setLEDs(0b111111); moveAtSpeed(100,100); mSleep(2000); Stop(); while(true) { task_motionControl } return 0; }
In dem Programm würde der RP6 als erstes alle LEDs anschalten und für 2 Sekunden mit der selben Geschwindigkeit auf beiden Motoren fahren und dann stehen bleiben.
Erfahrungsberichte
...in Arbeit...(kann aber gerne ergänzt werden)
Siehe auch
Weblinks
Autoren
--Sloti 22:23, 29. Dez 2007 (CET)
--Dirk 16:47, 26. Mai 2008 (CET)