Aus RN-Wissen.de
Wechseln zu: Navigation, Suche
Balkonkraftwerk Speicher und Wechselrichter Tests und Tutorials

K
(Spannungsabhängigkeit)
Zeile 17: Zeile 17:
 
=== Temperaturabhängigkeit ===
 
=== Temperaturabhängigkeit ===
 
=== Spannungsabhängigkeit ===
 
=== Spannungsabhängigkeit ===
 +
Die Kapazität von Halbleiterelementen und einigen schlechten Kondensatoren ist spannungsabhängig. Dadurch ergibt sich eine Spannungsabhängige Kapazität am Quarz und damit eine geringfügig Spannungsabhängige Frequenz.
 +
 
=== Einschwingzeit ===
 
=== Einschwingzeit ===
 
=== Einschwingreserve ===
 
=== Einschwingreserve ===

Version vom 15. August 2008, 15:13 Uhr

Der Autor möchte hier weder die an anderen Stellen zu findenden Formelsammlungen wiedergeben, noch mit diesem Artikel ein Fachbuch ersetzten. Einzig die Grundlagen, die (aus eigener Erfahrung) für einen Hobby-Bastler von Interesse sind, sollen hier dargestellt werden.


Da ein Schwingquarz an sich weder Oszillator noch Taktgeber darstellt, sondern einzig zur Festlegung der verwendeten Frequenz dient, muß er entsprechend beschaltet werden, um eine quarzstabilisierte Oszillatorschaltung (im folgenden vereinfacht Quarzoszillator genannt) darzustellen. Dazu sind zwei Verfahren möglich

Entweder

  • wird eine der möglichen bekannten Oszillatorschaltung aus diskreten Bauteilen aufgebaut

oder

  • man verwendet einen "externen Oszillator", bei dem die elektronische Schaltung zusammen mit dem frequenzbestimmenden Schwingquarz bereits in ein genormtes Gehäuse eingesetzt ist.


Einfache Oszillatorschaltungen, wie z. B. LC-Schwingkreise, können bauteilbedingt Abweichungen von der theoretisch berechneten Resonanzfrequenz von über 1 % besitzen. Quarzoszillatoren hingegen sind in ihrer Frequenz relativ genau und besitzen Abweichungen von typischerweise unter 0,01 %. In der Praxis sind daher Quarzoszillatoren meist als Taktgeber (für Prozessoren, in Uhren etc.) zu finden.


Allgemeines zu Oszillatorschaltungen

Temperaturabhängigkeit

Spannungsabhängigkeit

Die Kapazität von Halbleiterelementen und einigen schlechten Kondensatoren ist spannungsabhängig. Dadurch ergibt sich eine Spannungsabhängige Kapazität am Quarz und damit eine geringfügig Spannungsabhängige Frequenz.

Einschwingzeit

Einschwingreserve

Ausgangsbelastbarkeit

Oszillatorschaltungen

Fast alle in der Praxis verwendeten Schaltungen werden aus einer einstufigen Verstärkerschaltung mit Parallelschwingkreis abgeleitet. Die drei mögliche Grundschaltungen werden nach der Art der Rückkopplung klassifiziert (kapazitiv, induktiv oder mit Übertrager). In jeder dieser drei Grundschaltungen können durch Veränderung des Erdungspunktes drei zusätzliche Versionen abgeleitet werden: Ist das aktive Element ein Transistor, so sind die drei Transistor-Grundschaltungen möglich; ist das aktive Element ein Verstärker, so kann dieser als invertierender Verstärker, als nicht invertierten Verstärker oder als nicht invertierender Verstärker mit Verstärkung Eins eingesetzt werden. In diesen verschiedenen Schaltungen wiederum kann ein Quarz eingesetzt werden:

  • in der Rückkopplungsschleife an Ein- oder Ausgang des aktiven Elements als Serienelement.
  • als Gegenkopplungselement "abseits" der Rückkopplung. Dadurch wird eine ausreichende Verstärkung bei der niederohmigen Resonanz des Quarzes erreicht.
  • als kompletter oder teilweiser Ersatz einer Induktivität, so arbeitet der Quarz im induktiven Zweig.
Pierce-Schaltung mit Logik-Baustein

Pierce

Einstufige Schaltung, neben der Colpitts-Schaltung eine der zuverlässigsten Oszillatorschaltungen. Der Vorteil liegt in der hohen Ausgangsamplitude, die zur direkten Ansteuerung von TTL- oder CMOS-Logikschaltungen ausreicht. Ihr Nachteil: Ein evtl. erforderlicher Abgleichtrimmer kann nicht gegen Masse gelegt werden. Ein Abgleich durch Verstellen eines der beiden Rückkopplungskondensatoren (an Kollektor bzw. an Basis gegen Masse) ist nicht zu empfehlen.
Wesentlich häufiger als eine diskret aufgebaute Pierce-Schaltung wird sie jedoch in der Form mit Logik-Gattern (meist NAND oder Inverter) realisiert. Diese Schaltung ist auch in vielen integrierten On-chip-Quarzoszillatoren vorhanden.

- Pierce-Lorenz

Einstufige Inverter-Schaltung; seltenere Abwandlung der Pierce-Schaltung mit kapazitivem Spannungsteiler.

- Pierce-Miller

Einstufige Inverter-Schaltung; seltene Abwandlung der Pierce-Schaltung mit induktivem Spannungsteiler.

Diskret aufgebaute Colpitts-Schaltung

Colpitts

Einstufige Schaltung. Beim Colpitts-Quarzoszillator arbeitet ein Transistor als Emitterfolger mit geerdetem Kollektor. Der Quarz schwingt bei Lastresonanz. Diese Schaltung wird am häufigsten verwendet, sie zeichnet sich durch große Unempfindlichkeit in der Bauteil-Dimensionierung sowie ihre Betriebszuverlässigkeit aus.

Weitere Schaltungen

- Clapp

Einstufige Schaltung, auch "grounded-base-Schaltung" genannt. Der Rückkopplungskreis liegt zwischen einem kapazitiven Spannungsteiler und dem Emitter des Transistors. Da übliche Schwingquarze oberhalb von etwa 150 MHz keine rein ohmische Resonanzfrequenz mehr besitzen, muß diese mit einer Kompensatorspule wieder erzwungen werden. Sehr zuverlässig für Obertonquarze bis zu 300 MHz.

- Clapp-Gouriett

Einstufige Schaltung, aus der Colpitts-Schaltung entwickelt. Sie ist für Quarze im 3. und 5. Oberton besonders geeignet, für höhere Obertönen ist sie jedoch nicht zu empfehlen. Der Quarz schwingt in Lastresonanz, was besonders bei höheren Frequenzen nachteilig sein kann. Oberhalb von 90 MHz sollte eine Serienresonanzschaltung verwendet werden.

- Heegner

Zweistufiger Schaltungsaufbau mit Inverter-Verstärkern. Wird nur noch selten für Frequenzen unter 1 MHz verwendet, da meist eine hohe Verstärkung erforderlich ist.

- Butler

Zweistufiger Schaltungsaufbau mit normalen Verstärkern. Wird gelegentlich zur Realisierung sehr großer Ziehbereiche verwendet, außerdem ist die Schaltung niederohmig und wird daher gerne in der Meßtechnik verwendet.

Mikrocontroller mit einem Oszillator-Eingang

Gelegentlich sind Mikrocontroller zu finden, die nur einen Takteingang besitzen. In diesem Fall wird eine Schaltung verwendet, in der nur der Schwingquarz in Reihe zu einem Kondensator an Masse liegt. Der IC-Hersteller möchte damit den Anwender die Lastkapazität einstellen lassen und/oder die Gleichstromisolation des Quarzes sicherstellen.
Es empfiehlt sich dann, einen Kondensator zu verwendeten, der dem spezifizierten CL-Wert des Quarzes (lt. Datenblatt) entspricht.

Externe Oszillatoren

Dieser Artikel ist noch lange nicht vollständig. Der Auto/Initiator hofft das sich weitere User am Ausbau des Artikels beteiligen.

Das Ergänzen ist also ausdrücklich gewünscht! Besonders folgende Dinge würden noch fehlen:

Ausbau - Bilder einfügen!



--Williwilli 15:20, 15. Aug 2008 (CET)


LiFePO4 Speicher Test