Aus RN-Wissen.de
Wechseln zu: Navigation, Suche
Laderegler Test Tueftler Seite

(Gleichspannungsverdopplung)
(Spannungsverdopplung mit Ladungpumpe)
Zeile 69: Zeile 69:
 
[http://home.berg.net/opering/projekte/7/index.htm Schaltung mit Stereoverstärker TDA2004 - Eingangsspannung 6 bis 12V]<br/>
 
[http://home.berg.net/opering/projekte/7/index.htm Schaltung mit Stereoverstärker TDA2004 - Eingangsspannung 6 bis 12V]<br/>
 
=== Spannungsverdopplung mit Ladungpumpe ===
 
=== Spannungsverdopplung mit Ladungpumpe ===
 +
Bei Ladungspumpen-ICs werden die Dioden (oder wenigstens ein Teil) durch MOSFET Schalter ersetzt. Dadurch entfällt der Spannungsverlust an den Dioden.
 
[http://www.datasheetcatalog.org/datasheet/maxim/ICL7660-MAX1044.pdf Datenblatt des Spannungswandler-ICs  MAX1044 / ICL7660]<br/>
 
[http://www.datasheetcatalog.org/datasheet/maxim/ICL7660-MAX1044.pdf Datenblatt des Spannungswandler-ICs  MAX1044 / ICL7660]<br/>
Dieses IC ist vor allem zur Erzeugung einer negativen Spannung gedacht.
+
Dieses IC ist vor allem zur Erzeugung einer negativen Spannung gedacht; für die im Datenblatt gezeigte Spannungverdoppung wird auch nur ein Rechteckausgang genutzt.
 +
 
 +
Das gängige RS232 Treiber IC, MAX232 enhält unter anderem eine Ladungspumpe, um die 5 V Versorgung auf knapp 10 V zu "verdoppeln". Dazu werden nur 2 externen Kondensatoren benötigt.
  
 
=== Spannungsverdopplung mit Schaltregler ===
 
=== Spannungsverdopplung mit Schaltregler ===

Version vom 14. Oktober 2009, 20:21 Uhr

Spannungsverdoppler sind in ihrem Ursprung eine besondere Form von Gleichrichterschaltungen, bei denen die erzeugte Ausgangsgleichspannung größer ist als der Spitzenwert der gleichgerichteten Eingangswechselspannung.
Eine Verdopplung von Gleichspannung ist nur über den Umweg der Wechselrichtung möglich, dies geschieht mittels schwingender Verstärkerschaltungen oder anderer taktgebender Bauteile.


Grundlagen

Symmetrische Verdopplung / Delon- oder Greinacher-Schaltung

Delon-Schaltung

Die positive Halbwelle lädt über die Diode D1 den Kondensator C1 auf den Spitzenwert der Wechselspannung Ue auf, die negative Halbwelle lädt über die Diode D2 den Kondensator C2 ebenfalls auf Ue auf. Danach verhalten sich die beiden Kondensatoren wie zwei in Reihe geschaltete Spannungsquellen, an ihnen kann nun die verdoppelte Ausgangsspannung Ua = 2 * Ue abgegriffen werden.

Sie wird als symmetrisch bezeichnet, weil man den Punkt zwischen den Kondensatoren als Massepunkt betrachten kann (und damit Ua = +/- Ue gilt).

Diese Schaltung ist sehr einfach und leicht verständlich, kann jedoch nicht zur weiteren Spannungserhöhung kaskadiert ("hintereinandergeschaltet") werden.


Unsymmetrische Verdopplung / Villard-Schaltung

Villard-Schaltung

Die negative Halbwelle lädt über die Diode D1 den Kondensator C1 auf die Spannung Ue auf. Bei der positiven Halbwelle addiert sich die Spannung Ue von C1 mit der Spannung Ue am Eingang, so daß der Kondensator C2 über die Diode D2 nun auf Ua = 2 * Ue aufgeladen wird.

Sie wird als unsymmetrisch bezeichnet, weil am Ausgang der obere Anschluß immer auf positivem und der untere Anschluß immer auf negativem Potential liegt.

Diese Schaltung ist ebenfalls einfach und verständlich. Ihr großer Vorteil liegt in der Kaskadierbarkeit zur weiteren Spannungserhöhung.


Einschränkungen

Die Eingangsspannung für diese Schaltungen ist eine Wechselspannung, die Ausgangsspannung eine pulsierende Gleichspannung. Diese Ausgangsspannung eignet sich nur bedingt zur Versorgung anderer Schaltungen, weil:

  • die pulsierende Ausgangsspannung sich ohne weitere elektronische Maßnahmen (Glättung, Stabilisierung etc.) zumindest nicht zum störungsfreien Betrieb digitaler Schaltungen eignet und
  • die Strombelastbarkeit, zumindest bei mehrstufigen Schaltungen, deutlich niedriger ist als die Belastbarkeit der ursprünglichen Quelle. Die Gesamtleistung der Quelle bleibt ja gleich.


Möglichkeiten der Realisierung

Die oben gezeigten grundlegenden Schaltungen lassen sich, so wie sie sind, sofort zur Spannungsverdopplung einsetzen. Hier folgen nun noch einige weitere Möglichkeiten, Erweiterungen und Ergänzungen.

Kaskadenschaltung (Vervielfacher)

Die Bilder zeigen

  • a. eine etwas anders gezeichtete Form der Villard-Schaltung (s.o.)
  • b. eine Hintereinanderschaltung von zwei dieser Schaltungen
  • c. eine Hintereinanderschaltung von drei dieser Schaltungen

a. Villardkaskade1.GIF
b. Villardkaskade2.GIF
c. Villardkaskade3.GIF

Bei den Spannungsvervielfacherschaltungen muß beachtet werden:

  • Die Ausgangsspannung beträgt Eingangsspannung mal 2 mal die Anzahl der Stufen: Ua = 2 * n * Ue
  • Der Laststrom beträgt Eingangsstrom geteilt durch die Anzahl der Stufen: Ia = Ie / n
  • Alle verwendeten Kondensatoren (außer C1) müssen für eine Spannung von 2 * Ue dimensioniert sein.
  • Der Innenwiderstand steigt mit der Anzahl der Stufen, verringert sich aber bei einer Vergrößerung der Kondensatorwerte. Er hängt jedoch stark vom Innenwiderstand der Wechselspannungsquelle ab.


Theoretisch sind mit Kaskadenschaltungen beliebig hohe Ausgangsspannungen möglich, praktisch stehen diesen jedoch technische Probleme entgegen (Isolation, Kapazitäten, Feldeffekte etc.). So sind im professionellen Bereich Kaskaden bis zu mehreren Megavolt erhältlich, im privaten Bereich erweisen sich bei ca. 40 kV die technischen Schwierigkeiten als nahezu unüberwindlich.

Von der Verwendung hoher Wechselspannungen - insbesondere der Netzspannung - als Eingangsspannung einer Kaskade ist dringend abzuraten. Lebensgefahr!


Gleichspannungsverdopplung

Wenn man von Gleichspannung ausgeht, muß erst eine meist rechteckförmige Wechselspannung erzeugt werden. Wegen der dann kleineren Kondensatoren wird dabei oft ein Frequenz im Bereich 1-50 kHz gewählt. Es muß dann allerdings auf genügend schnelle Diode geachtet werden. Die Schaltungen unterscheiden sich vor allem in der Erzeugung der Wechselspannung.

Hier sind einige interessante Links zu verschiedenen Bastlerseiten aufgeführt, auf denen die verschiedenen Schaltungsmöglichkeiten teils sehr detailliert beschrieben werden.

Spannungsverdopplung mit Transistoren

FET-Schaltstufe mit BUZ11 - Leistungsausgang am AVR

Spannungsverdopplung mit NE555

Schaltung mit NE555 - Einfache Variante 1
Schaltung mit NE555 - Etwas komplexere Variante 2, aber auch etwas leistungsstärker...

Spannungsverdopplung mit Operationsverstärker

Schaltung mit NF-Verstärker TDA2003 - bis 14V Eingangsspannung
Schaltung mit Stereoverstärker TDA2004 - Eingangsspannung 6 bis 12V

Spannungsverdopplung mit Ladungpumpe

Bei Ladungspumpen-ICs werden die Dioden (oder wenigstens ein Teil) durch MOSFET Schalter ersetzt. Dadurch entfällt der Spannungsverlust an den Dioden. Datenblatt des Spannungswandler-ICs MAX1044 / ICL7660
Dieses IC ist vor allem zur Erzeugung einer negativen Spannung gedacht; für die im Datenblatt gezeigte Spannungverdoppung wird auch nur ein Rechteckausgang genutzt.

Das gängige RS232 Treiber IC, MAX232 enhält unter anderem eine Ladungspumpe, um die 5 V Versorgung auf knapp 10 V zu "verdoppeln". Dazu werden nur 2 externen Kondensatoren benötigt.

Spannungsverdopplung mit Schaltregler

Mit einigen Schaltreglern (z.B. Boost-Regler) läßt sich die Spannung erhöhen und ggf. auch verdoppel. Anders als bei den Schaltungen zuvor, ist man aber nicht auf ein festes Spannungsverhältnis festgelegt. Dafür braucht man ein Induktivität und eine Regelung des PWM Signals.

Quellen

Das Elektronik-Kompendium
Wikipedia
Kaskade bei "Jogis Röhrenbude"


Anmerkung

Dieser Artikel ist noch lange nicht vollständig. Der Auto/Initiator hofft das sich weitere User am Ausbau des Artikels beteiligen.

Das Ergänzen ist also ausdrücklich gewünscht! Besonders folgende Dinge würden noch fehlen:

Ergänzungen, Erweiterungen, Bilder, Links zu Schaltplänen ...


Der Autor möchte hier weder die an anderen Stellen zu findenden Formelsammlungen wiedergeben, noch mit diesem Artikel ein Fachbuch ersetzten. Einzig die Grundlagen, die (auch aus eigener Erfahrung) für einen Hobby-Bastler von Interesse sind, sollen hier dargestellt werden.


Autor

--Williwilli 09:00, 02. Okt 2009 (CET)


LiFePO4 Speicher Test