Aus RN-Wissen.de
Wechseln zu: Navigation, Suche
LiFePO4 Speicher Test

Zeile 4: Zeile 4:
 
Eine Diode besteht aus zwei Schichten, einem n-dotierten und einem p-dotierten Halbleitermaterial, die sich berühren. Aufgrund von Abstoßung bzw. Anziehung von gleichen Ladungen findet abhängig von der Polung einer externen Spannungquelle entweder ein Stromfluß statt oder wird komplett unterbunden. Somit leitet eine Diode nur in eine Richtung.  
 
Eine Diode besteht aus zwei Schichten, einem n-dotierten und einem p-dotierten Halbleitermaterial, die sich berühren. Aufgrund von Abstoßung bzw. Anziehung von gleichen Ladungen findet abhängig von der Polung einer externen Spannungquelle entweder ein Stromfluß statt oder wird komplett unterbunden. Somit leitet eine Diode nur in eine Richtung.  
  
 +
==Schaltzeichen==
  
 
[[Bild:schaltzeichendiode.jpg]]  [[Bild:Diodebeispiel.gif]]
 
[[Bild:schaltzeichendiode.jpg]]  [[Bild:Diodebeispiel.gif]]

Version vom 31. Dezember 2005, 17:26 Uhr

Eine Diode hat die Eigenschaft, Strom nur in einer Richtung durchzulassen. Sehr häufig werden Dioden als sogenannte Gleichrichterdioden verwendet. Dadurch dass Dioden Strom nur in eine Richtung durchlassen, erhält man am Ausgang einen pulsierenden Gleichstrom der dann mit Hilfe eines Elkos geglättet wird.. Es gibt jedoch noch viele weitere Anwendungen in der Elektronik, bei denen es darauf ankommt, daß sehr kleine Steuerströme nur in eine Richtung fließen können. Dioden auch als Schutzdioden werden auch genutzt um eine teure Schaltung (Controllerboards) vor der Zerstörung durch eine Verpolung zu schützen.

Eine Diode besteht aus zwei Schichten, einem n-dotierten und einem p-dotierten Halbleitermaterial, die sich berühren. Aufgrund von Abstoßung bzw. Anziehung von gleichen Ladungen findet abhängig von der Polung einer externen Spannungquelle entweder ein Stromfluß statt oder wird komplett unterbunden. Somit leitet eine Diode nur in eine Richtung.

Schaltzeichen

Schaltzeichendiode.jpg Diodebeispiel.gif


Kennlinienverlauf von Germanium- und Silizium-Dioden


Einige Spezialformen

Schottky Dioden

Her erfolgt die Sperrschichtbildung zwischen einem N-dotierten Siliziumkristall und einer Metallelektrode (Randschichttheorie nach W. Schottky, 1938). Kennzeichen des nach dem Planarverfahren hergestellten Metall-Halbleiterübergang sind eine gegenüber Silizium niedrige Kniespannung (0,3V.......0,4V), ein sehr scharfer Kennlinienknick in Durchlaß- und Sperrichtung, ein streng exponentieller Kennlinienverlauf, niedrige Sperrströme, geringes Rauschen und extrem schnelle Schaltzeiten (somit hervorragend geeignet zum Gleichrichten von Wechselspannungen bis 50 GHz).


Lawinen-Gleichrichterdioden

Im Gegensatz zu normalen Dioden darf die Durchbruchspannung U(BR) mit nichtperiodischen Verlustleistungsimpulsen überschritten werden, ohne daß damit die Lawinen-Gleichrichterdiode (Si-Diode mit kontrolliertem Durchbruchverhalten) zerstört wird.

Selengleichrichter

Die Selengleichrichter (polykristallin) haben im Vergleich zu Siliziumgleichrichtern größere Abmessungen und hohe Durchlaß- und Sperrverlußte. Vorteilhaft ist eine höhere Überlastbarkeit und der Überlastschutz mit normalen flinken Sicherungen. Je Gleichrichterplatte werden bis zu 45 Volt Sperrspannung und Stromdichten bis zu 150mA/cm2 erreicht.

Zehnerdioden

Dioden die ab einer bestimmten Spannung (Zehnerspannung) auch in Sperrichtung leitend werden



Weblinks


LiFePO4 Speicher Test