Aus RN-Wissen.de
Version vom 16. Mai 2009, 19:14 Uhr von Besserwessi (Diskussion | Beiträge) (Verpolungsschutz mit Dioden)

Wechseln zu: Navigation, Suche
Rasenmaehroboter Test

Dieser Artikel ist noch lange nicht vollständig. Der Auto/Initiator hofft das sich weitere User am Ausbau des Artikels beteiligen.

Das Ergänzen ist also ausdrücklich gewünscht! Besonders folgende Dinge würden noch fehlen:

Was Euch noch dazu einfällt


Ein Verpolungsschutz wird in der Spannungsversorgung eines Verbrauchers (Gerätes) eingesetzt. Die Schutzschaltung verhindert entweder die falsche Polarität oder begrenzt den durch diese Verpolung entstehenden Schaden.


Verpolungsschutz mit Dioden

  • Variante 1: Eine Diode wird in Reihe mit der Versorgungsspannung geschaltet.
    • Funktion: Bei Verpolung sperrt die Diode. Der Verbraucher erhält keinen Strom.
    • Vorteil: Nur eine Diode nötig.
    • Nachteil: Verlustleistung, Spannungsabfall, Durchlaßstrom der Diode müssen beachtet werden.
  • Variante 2: Eine Diode wird antiparallel zur Versorgungsspannung geschaltet. Zusätzlich eine Sicherung in der Zuleitung.
    • Funktion: Bei Verpolung schließt die Diode die Versorgungsspannung kurz. Die Sicherung spricht an und verhinder den echten Kurzschluss sowie das Durchbrennen der Diode.
    • Vorteil: Bei korrekter Polung hat die Schutzschaltung keinen Einfluß auf den Rest der Schaltung.
    • Nachteil: Bei Verwendung von normalen Sicherungen ist nach einer Verpolung ein Wechsel notwendig.
  • Varinate 2b: wie Variante 2, nur statt einer normalen Diode wird eine unipolarer Überspannungsschutz (z.B. 1.5KE12A) benutzt.
    • Vorteil: bietet zusätzlichen Schutz vor zu hoher Spannung.
    • Nachteil: teurer als normale Diode

Verpolungsschutz mit MOSFETs

Verpolungsschutz mit N-MOSFET

Für den Verpolungsschutz mit einem MOSFET wird der FET andersherum als sonst üblich benutzt, also beim N-Kanal FET mit Drain zur negativen Seite der Spannungsquelle. Anfangs fließt der Strom über die interne Diode im MOSFET. Wenn etwa 2-4 V erreicht sind leitet dann zusätzlich der eigentliche MOSFET. Für Spannungen die sicher unter etwa 20V (maximale Gate-Source Spannung) sind kann man auf die Diode, Zenerdiode und den Widerstand verzichten.

  • Variante 1: n-Kanal-MOSFET in Reihe mit der negativen Spannungsversorgung (GND)
    • Vorteil: sehr geringer Spannungsabfall, Überspannung kann zur Quelle abgleitet werden
    • Nachteile: Mindestspannung ca. 4 V, mit Logic-Level Fets ca. 2 V, ein Elko in der Schaltung bietet keinen Schutz vor Spannungseinbrüchen auf der Batterieseite, Stromverbrauch bei Spannungen über etwa 20 V, oft teurer als Diode
  • Variante 2: p-Kanal-MOSFET in Reihe mit der positiven Spannungsversorgung
    • Vorteil: wie Variante 1
    • Nachteile: wie Variante 1, Logic-Level Fets selten, oft teurer als N-MOSFET

Verpolungsschutz mit anderen Bauteilen

  • Variante 1: Vorgeschalteter Brückengleichrichter.
    • Funktion: siehe Gleichrichter
    • Vorteil: Es liegt immer die richtige Polarität am Verbraucher an, auch wenn beim Anschluss die Leitungen vertauscht werden.
    • Vorteil: Verträgt auch Wechselstrom als Speisequelle.
    • Nachteil: Spannungsabfall (ca. 1.4 V) und Verlustleistung am Brückengleichrichter
    • Nachteil: Schaltungsmasse (GND) ist um 0,7V Potentialverschoben zu der Versorgungsspannung.
  • Variante 2: Relais schaltet mit Hilfe einer Diode die Versorgungsspannung zum Verbraucher.
    • Vorteil: Kaum Spannungsabfall an den Schaltkontakten.
    • Nachteile: Aufwendig. Zusätzliche Verlustleistung in der Relaisspule. Kein Schutz vor Pulsen mit falscher Polung.
  • Variante 3: Ähnlich wie mit MOSFET, aber mit normalem Transistor
    • Vorteile: für Spannungen ab ca. 1 V möglich, kleiner Spannungsabfall (<100mV), ggf. auch als Strombegrenzung
    • Nachteile: Stromverbrauch (Basistrom), Schutz nur bis etwa 5V, ggf. etwas Leckstrom

Links

Schutz mit MOSFETS (englisch)

Autor

--Williwilli 14:54, 11. Dez 2008 (CET)


LiFePO4 Speicher Test