Inhaltsverzeichnis
RP6v2 Orientierung: Hardware
In diesem Projekt soll eine "Exp" (RP6#Experimentierplatine, CONRAD 191537) für den RP6v2 (natürlich auch für den RP6) "gebaut" werden, mit der sich der RP6v2 besser im Raum orientieren kann.
Die Sensoren des RP6v2 (Odometrie, ACS, Helligkeitssensoren, Bumper) helfen ihm zwar schon dabei, sich im Raum zu orientieren, aber das geht noch besser:
- Wenn er einen Kompass bekommen würde, könnte er eine bestimmte Richtung einhalten oder genauere Kurven fahren. Ein einfach zu verwendendes Kompassmodul auf Basis des MMC2120MG von MEMSIC ist das HDMM01 (Pollin Best.-Nr. 810164). Es kann über den I2C-Bus ausgelesen und an 5V betrieben werden. Zudem ist es recht preisgünstig.
- Wenn er auch noch einen Beschleunigungssensor bekommen würde, könnte er Bewegungen und Beschleunigungen messen. ELV bietet ein 3-Achsen-Beschleunigungssensor-Modul (ELV Best.-Nr. 91521) auf Basis des BMA020 von Bosch Sensortec an. Auch dieses Modul kann an 5V betrieben werden und verfügt über I2C-Pegelwandler, um es an einen I2C-Bus mit 5V-Pegeln anschliessen zu können.
- Wenn er sogar noch ein GPS-Modul bekäme, könnte er seine eigene Position bestimmen. Ob ein GPS-Modul für einen Roboter, der eigentlich nur in Innenräumen fahren kann, sinnvoll ist, muss jeder selbst eintscheiden. Geeignet für unsere Zwecke ist das GPS-Modul NL-552ETTL von Navilock (auch z.B. bei ELV erhältlich: Artikel-Nr. 68-094241. Bitte unbedingt auch das Anschlusskabel: Artikel-Nr. 68-081846 mit bestellen!). Das Modul kann ebenfalls mit 5V betrieben werden,- leider arbeitet seine serielle Schnittstelle mit 3,3V-Pegeln. Dies ist aber kein wesentliches Problem, weil nur TX des Moduls mit einem UART-Eingangspin (RX) des Microcontrollers (µC) verbunden werden muss, und der versteht die 3,3V-TTL-Logik in der Regel ohne Probleme.
- Da wir schon dabei sind, können wir auch noch eine 3,3V-Pegel-Anpassung des I2C-Busses des RP6v2 auf der Exp vorsehen: Man kann dann auch I2C-Slave-Bausteine, die nur an einem 3,3V-I2C-Bus arbeiten, an den RP6v2 anschließen.
Was braucht man allgemein für den Aufbau einer Schaltung auf der Exp:
- Seitenschneider, Schere, Zange
- Lötkolben 25..30 Watt, Lötzinn
- Plastik 70 Schutzlack (CONRAD 813621)
- Isolierter Schaltdraht YV 0,20 mm² (CONRAD 606065)
- Versilberter CU-Draht 0,6 mm (CONRAD 605581)
Mit dem versilberten CU-Draht stellt man auf der Unterseite (= Lötseite) der Exp Verbindungen zwischen den Bauteilen her; mit dem isolierten Schaltdraht werden Drahtbrücken auf der Oberseite (= Bestückungsseite) der Exp eingesetzt.
Aufbau
Hier der Schaltplan:
Teileliste: C1 Elko 10µF, 16V C2 Keram. Kondensator 0,1µF C3 Keram. Kondensator 0,1µF C4 Keram. Kondensator 0,1µF R1 Kohleschicht-Widerstand 4,7 kOhm, 1/4 Watt R2 Kohleschicht-Widerstand 10 kOhm, 1/4 Watt R3 Kohleschicht-Widerstand 4,7 kOhm, 1/4 Watt R4 Kohleschicht-Widerstand 10 kOhm, 1/4 Watt R5 Kohleschicht-Widerstand 4,7 kOhm, 1/4 Watt R6 Kohleschicht-Widerstand 4,7 kOhm, 1/4 Watt R7 Kohleschicht-Widerstand 2,2 kOhm, 1/4 Watt Q1 MOSFET BSN10A Q2 MOSFET BSN10A 3,3V Spannungsregler ST L78L33A
Viel Erfolg beim Aufbau!
Natürlich muss man nicht alle drei Sensoren aufbauen! Man kann einfach den/die Sensor/en weglassen, die man nicht nutzen will!
Schaltungsbeschreibung
Allgemeine Daten und Tabellen
Stecker
Stecker | Pins | Bedeutung |
ST1 | 5 | Anschluß GPS-Modul |
ST2 | 3 | µC-Anschluß für GPS-Modul |
ST3 | 7 | 3,3V-I2C-Bus Anschluß |
ST1
Pin | Funktion | E/A | Bedeutung |
1 | ? | ? | |
2 | ? | ? | |
3 | ? | ? | |
4 | ? | ? | |
5 | ? | ? |
ST2
Pin | Funktion | E/A | Bedeutung |
1 | ? | ? | |
2 | ? | ? | |
3 | ? | ? |
ST3
Pin | Funktion | E/A | Bedeutung |
1 | ? | ? | |
2 | ? | ? | |
3 | ? | ? | |
4 | ? | ? | |
5 | ? | ? | |
6 | ? | ? | |
7 | ? | ? |
Jumper
Zeichenerklärung:
- Zweipolige Jumper:
- Stellung ON = Jumper aufgesteckt (Kontakt geschlossen)
- Stellung OFF = Jumper abgezogen (Kontakt offen)
Jumper | Stellung | Bedeutung |
JP1 | OFF | ? |
JP1 | ON (S) | ? |
JP1 | OFF | ? |
JP1 | ON (S) | ? |
JP1 | OFF | ? |
JP1 | ON (S) | ? |
JP1 | OFF | ? |
JP1 | ON (S) | ? |
JP1 | OFF | ? |
JP1 | ON (S) | ? |
JP1 | OFF | ? |
JP1 | ON (S) | ? |
JP1 | OFF | ? |
JP1 | ON (S) | ? |
JP1 | OFF | ? |
JP1 | ON (S) | ? |
JP1 | OFF | ? |
JP1 | ON (S) | ? |
JP1 | OFF | ? |
JP1 | ON (S) | ? |
JP1 | OFF | ? |
JP1 | ON (S) | ? |
JP1 | OFF | ? |
JP1 | ON (S) | ? |
JP1 | OFF | ? |
JP1 | ON (S) | ? |
JP1 | OFF | ? |
JP1 | ON (S) | ? |
JP1 | OFF | ? |
JP1 | ON (S) | ? |
JP1 | OFF | ? |
JP1 | ON (S) | ? |
Zu (S) Standard-Stellung der Jumper!
RP6v2 Orientierung: Software
Siehe auch
- RP6
- RP6 - Programmierung
- RP6v2
- RP6 Kamera - Mitmach-Projekt
- RP6v2 I2C-Portexpander
- RP6v2 USB-RS232-Adapter
- CCRP5
- Yeti
- Asuro
Quellen
- Kompassmodul HDMM01
- 3-Achsen-Beschleunigungssensor-Modul
- Navilock NL-552ETTL GPS-Modul
- ST L78L33A Datasheet
- BSN10A Datasheet
Autoren
--Dirk 07:20, 1. Okt 2012 (CET)