Aus RN-Wissen.de
Wechseln zu: Navigation, Suche
Laderegler Test Tueftler Seite

Zeile 38: Zeile 38:
  
 
und sagen damit, dass sich die Maßzahl der ersten Größe entsprechend der der zweiten verändert, damit bleibt das Verhältnis der Maßzahlen konstant, es ist der Proportionalitätsfaktor. Gleichzeitig sorgt der Proportionalitätsfaktor auch dafür, dass die Dimensionen der Größen aufeinander angepasst sind. Denn man kann nicht eine Kraft mit einem Weg vergleichen, man kann nur die Maßzahl der Kraft mit der Maßzahl des Weges vergleichen! Diese Unterscheidungen sind von grundlegender Bedeutung. Ohne sie sich zu verdeutlichen, bleibt das Verstehen oft auf der Strecke. Und etwas zu verstehen schadet in der Regel nicht.
 
und sagen damit, dass sich die Maßzahl der ersten Größe entsprechend der der zweiten verändert, damit bleibt das Verhältnis der Maßzahlen konstant, es ist der Proportionalitätsfaktor. Gleichzeitig sorgt der Proportionalitätsfaktor auch dafür, dass die Dimensionen der Größen aufeinander angepasst sind. Denn man kann nicht eine Kraft mit einem Weg vergleichen, man kann nur die Maßzahl der Kraft mit der Maßzahl des Weges vergleichen! Diese Unterscheidungen sind von grundlegender Bedeutung. Ohne sie sich zu verdeutlichen, bleibt das Verstehen oft auf der Strecke. Und etwas zu verstehen schadet in der Regel nicht.
 +
 +
Bleiben wir nun beim Beispiel Kraft und Weg für die Erläuterung, was denn eigentlich der Knackpunkt einer solchen Proportionalität ist.
 +
 +
Gehen wir davon aus: der aktuelle Weg hat die Koordinate 0 und die aktuelle Kraft ebenfalls. Genauer gesagt: die aktuelle Wegkoordinate ist die Sollkoordinate, die Abweichung vom Sollwert ist Null. Ebenso ist lediglich die Summe aller aktuell wirkenden Kräfte Null. Es können sehr wohl Kräfte existieren, die sich jedoch gegenseitig exakt kompensieren.
 +
Nun müssen wir klären, wovon wir eigentlich reden: was hat da die Abweichung und die Kraft Null? Damit es überhaupt an einem Ort ist, muss es etwas Körperliches sein. Damit eine Kraft darauf wirken kann, muss es eine Masse haben! Das erste erscheint klar. Das zweite nicht so direkt.
  
 
  [[Kategorie:Microcontroller]]
 
  [[Kategorie:Microcontroller]]

Version vom 2. Juni 2008, 21:34 Uhr

Siehe dazu auch unter Regelungstechnik

Proportional-Integral-Differenzial-Regler

Dieser Reglertyp ist weit verbreitet und in der Folge soll einmal versucht werden, aus einer energetischen Sicht seine Funktionsweise zu erklären. Üblich ist die Signalsicht.

Reale Systeme werden oft idealisiert betrachtet, um überhaupt in der Lage zu sein, sie zu beschreiben. Man darf aber nur solche Idealisierungen treffen, die den Charakter der Anordnung erhalten. Andernfalls kommt es zu Widersprüchen, die dann oft in heiße Diskussionen ausarten.

Dies soll an einem Beispiel erläutert werden:

Man denke sich zwei identische, ideale Kondensatoren der Kapazität 1, die durch einen ebenfalls idealen Schalter miteinander verbunden sind. Der Schalter ist offen, ein Kondensator ist entladen, der andere hat die Spannung 1 und damit auch die Ladung 1. Die Ladungsenergie ist 1/2 C U² und somit gleich 1/2. Nun wird der Schalter geschlossen, die Ladung verteilt sich auf beide Kondensatoren, die Spannung halbiert sich. Damit ist die Energie eines jeden Kondensators gleich 1/2 * 1 * (1/2)² gleich 1/8, die Energie beider Kondensatoren also 1/4. Kondensatoren und Schalter sind ideal, ohne Verluste. Wo ist die Hälfte der Energie hin verschwunden? Ein Verstoß gegen den Satz von der Energieerhaltung?

Dieses "Gedankenexperiment" führt zu heftigen Diskussionen in der Gemeinde.


Der proportionale Fall.

Was ist eigentlich "proportional"? Die Proportionalität ist aus "proportio", das Ebenmaß, das entsprechende Verhältnis entlehnt. Doch was steht womit im Verhältnis?

In der Mathematik gibt es ein reines Zahlenverhältnis: A ~ B Würde man nun einfach für A und B je eine Zahl einsetzen, etwa 3 ~ 5, so wäre dies zwar korrekt, aber doch verwirrend, weil sinnlos! Also steht A und B nicht für je eine Zahl, sondern stellvertretend für alle Zahlen, die eine bestimmte Bedingung erfüllen: das Verhältnis der beiden Zahlen ist eine dritte, konstante Zahl


Aus diesem Verhältnis kann man eine Gleichung machen: A / B = c

In der physischen Realität gibt es jedoch keine Zahlen an sich, sondern nur abzählbare Objekte. Diese Objekte können von einer bestimmten Charakteristik sein und eine Anzahl oder ein Größenmaß haben. Oder aber, sie haben eine unterschiedliche Charakteristik.

Ist Kraft oder Weg ein Objekt? Ja, in diesem besprochenen Sinn. Wenn wir von physischen Objekten reden, denken wir normalerweise an materielle Körper. Spätestens seitdem Licht als aus Teilchen zusammengesetzt betrachtet wird, kennt die Physik auch Objekte, die keine Masse haben und so ist der Objektbegriff verallgemeinert.

Wir dürfen also folgende Objekte zueinander ins Verhältnis setzen:

   Kraft ~ Weg
   Spannung ~ Fehler 

und sagen damit, dass sich die Maßzahl der ersten Größe entsprechend der der zweiten verändert, damit bleibt das Verhältnis der Maßzahlen konstant, es ist der Proportionalitätsfaktor. Gleichzeitig sorgt der Proportionalitätsfaktor auch dafür, dass die Dimensionen der Größen aufeinander angepasst sind. Denn man kann nicht eine Kraft mit einem Weg vergleichen, man kann nur die Maßzahl der Kraft mit der Maßzahl des Weges vergleichen! Diese Unterscheidungen sind von grundlegender Bedeutung. Ohne sie sich zu verdeutlichen, bleibt das Verstehen oft auf der Strecke. Und etwas zu verstehen schadet in der Regel nicht.

Bleiben wir nun beim Beispiel Kraft und Weg für die Erläuterung, was denn eigentlich der Knackpunkt einer solchen Proportionalität ist.

Gehen wir davon aus: der aktuelle Weg hat die Koordinate 0 und die aktuelle Kraft ebenfalls. Genauer gesagt: die aktuelle Wegkoordinate ist die Sollkoordinate, die Abweichung vom Sollwert ist Null. Ebenso ist lediglich die Summe aller aktuell wirkenden Kräfte Null. Es können sehr wohl Kräfte existieren, die sich jedoch gegenseitig exakt kompensieren. Nun müssen wir klären, wovon wir eigentlich reden: was hat da die Abweichung und die Kraft Null? Damit es überhaupt an einem Ort ist, muss es etwas Körperliches sein. Damit eine Kraft darauf wirken kann, muss es eine Masse haben! Das erste erscheint klar. Das zweite nicht so direkt.


LiFePO4 Speicher Test